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Abstract: In this research, the bending analysis of rectangular nanoplates subjected to mechanical 
loading is investigated. For this purpose, the strain gradient elasticity theory with one gradient 
parameter is presented to study the nanoplates. Navier method for static analysis of rectangular 
plates is obtained to solve the governing equations and boundary conditions. The suggested model 
is justified by a very good agreement between the results given by the present model and available 
data. Additionally, the effects of different parameters such as internal length scale parameter, 
length to thickness ratio and aspect ratio on the numerical results are also investigated.           
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1. Introduction 

In recent years, gradient elasticity theories have attracted many attentions because of the necessity of 

modeling and analysis of very small sized mechanical structures and devices in the rapid developments of 

micro-/nanotechnologies [1]. Gao and Park [2] provided a detailed variational formulation for a simplified 

strain gradient elasticity theory by using the principle of minimum total potential energy. This leaded to 

the simultaneous determination of the equilibrium equations and the complete boundary conditions of the 

theory for the first time. Ramezani [3] studied a micro scale non-linear Timoshenko beam model based on 

a general form of strain gradient elasticity theory. The von Karman strain tensor was used to capture the 

geometric non-linearity. It was shown that both strain gradient effect and that of geometric non-linearity 

increase the beam natural frequency. Daneshmand et al [4] introduced a gradient-enriched shell 

formulation based on the first order shear deformation shell model and the stress gradient and strain-

inertia gradient elasticity theories were used for dynamic analysis of single walled carbon nanotubes. The 

proposed shell formulation includes two length scale size parameters related to the strain gradients and 

inertia gradients. Ashoori Movassagh and Mahmoodi [5] presented a Kirchhoff micro-plate model based 

on the modified strain gradient elasticity theory to capture size effects, in contrast with the classical plate 

theory. The above analysis was general and could be reduced to the modified couple stress plate model or 

classical plate model. It was shown that the differences between the deflection predicted by the modified 

strain gradient model, the couple stress model and the classical model are large when the plate thickness is 

small and comparable to the material length scale parameters. A multi-cell homogenization procedure with 

four geometrically different groups of cell elements (respectively for the bulk, the boundary surface, the 

edge lines and the corner points of a body) was envisioned, which is able not only to extract the effective 

constitutive properties of a material, but also to assess the “surface effects” produced by the boundary 

surface on the near bulk material by Polizzotto [6]. Applying this procedure to a (finite) body suitably 

modelled as a simple material cell system, in association with the principle of the virtual power (PVP) for 
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quasi-static actions, an equivalent structural system was derived, featured by a (macro-scale) PVP having 

the typical format as for a second strain gradient material model. Sahmani and Ansari [7] predicted the 

free vibration behavior of microplates made of functionally graded materials (FGMs). On the basis of 

strain gradient elasticity theory, a non-classical higher-order shear deformable plate model containing 

three material length scale parameters was developed which can effectively capture the size dependencies. 

It was found that by approaching the thickness of microplates to the value of internal material length scale 

parameter, the natural frequency increases considerably. Zhang et al [8] developed a novel size-dependent 

curved microbeam model made of functionally graded materials based on the strain gradient elasticity 

theory and n shear deformation theory. The material properties of the FGM curved microbeam were 

assumed to vary in the thickness direction and were estimated through the Mori–Tanaka homogenization 

technique. The results indicated that the inclusion of size effect results in an increase in microbeam 

stiffness, and leads to a reduction of deflection and an increase in natural frequency. Yi et al [9] proposed 

a new strain gradient theory based on energy nonlocal model and the theory was applied to investigate the 

size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline 

copper. First, an energy nonlocal model was suggested. Second, based on the model, a new strain gradient 

theory was derived. Akgöz and Civalek [10] studied the size effect of microtubules via modified strain 

gradient elasticity theory for buckling. MTs were modeled by Bernoulli–Euler beam theory. The results 

based on the modified couple stress theory, nonlocal elasticity theory and classical elasticity theories had 

been presented for comparison purposes. Lazopoulos and Lazopoulos [15] discussed the torsion and the 

stretching of stress fibers into the context of strain gradient elasticity theory and their size effects. It was 

proven for the torsion problem that the torsion moment varies with the axial length of the bar for constant 

twist angle. The proposed theory was supported by experimental evidence. Amanatidou and Aravas [16] 

treated the strain-gradient elasticity theories developed by Mindlin and co-workers in the 1960s in detail. 

If traditional finite elements are used for the numerical solution of such problems, then ܥଵdisplacement 

continuity is required. They developed a variational formulation which can be used for both linear and 

non-linear strain-gradient elasticity theories. Peerlings and Fleck [17] determined the effective higher-

order elasticity constants required in the Toupin-Mindlin strain gradient theory. The method had been 

applied to a matrix-inclusion composite, showing that higher-order terms become more important as the 

stiffness contrast between inclusion and matrix increases. Based on the above review, as a first attempt, a 

new strain gradient elasticity theory using exponential shear deformation theory is presented for bending 

analysis of isotropic rectangular nanoplates. An analytical method is adopted to solve the governing 

equations. In order to validate the accuracy of the results of this analysis, our results are compared with 

numerical solutions found in the literature. This shows that the present model is appropriate for prediction 

of the displacements of rectangular nanoplates. 
 

2. Review of Strain gradient theory 

The gradient elasticity theory was developed by combining Eringen stress-gradient and stable strain-

gradient theory [1]. Various formats of gradient elasticity are used in the studies of nano structures [11, 

22-23]. In the present work, the strain gradient theory used by Askes and Aifantis [11] is adopted to derive 

the governing equations. It reads as, 

൫ߪ௜௝ െ ௜௝,௠௠൯ߪߤ ൌ ௜௝ߝ௜௝௞௟൫ܥ െ  ௜௝,௠௠൯                                                                                                      (1)ߝ݈

The above relation can also be written as follow, 
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where ߪ௜௝ and ߝ௜௝ are stress and strain tensors, ܥ௜௝௞௟ contains the elastic moduli, ݈ and ߤ denote internal 
length scales static and dynamic analysis. For the static analysis, ߤ can be equaled to zero and the above 
constitutive equation may be the same as Papargyri-Beskou and Beskos [12]. A difference between 
Eringen’s theory and equation (1) concerns how the balance of momentum is formulated: Eringen uses the 
divergence of ߪ௜௝ whereas above strain gradient elasticity theory uses the divergence of the right-hand side 
of equation (1). This difference implies an interchange of the roles of stress and strain [11]. Comparisons 
of experimental results from torsion and bending of beams with theoretical ones reveal that the gradient 
coefficient l (internal length) has values of the same order of magnitude as the diameter of the basic 
building block of the material microstructure, e.g., the grain in metals or ceramics, the osteon in bones or 
the cell in foams [12]. 
 

3. Governing equations 

The exponential shear deformation theory for macro plates accounts for a parabolic distribution of the 
transverse shear strains across the thickness, and it satisfies the zero traction boundary conditions on both 
of the top and bottom surfaces of the plate without using shear correction factors[13]. 
The displacement field of the proposed plate theory is given by [13], 
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(3) 

Three normal and three shearing strain components are defined which are leading to a total of six 
independent components that completely describe small deformation theory. This set of equations is 
normally referred to as the strain-displacement relations [14].  
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where	ݒ ,ݑ and ݓ are the displacements in the ݔ, ሻݖrespectively and ݂ሺ ,ݖ and ݕ ൌ ݌ݔ݁ݖ ൤െ2 ቀ
௭

୦
ቁ
ଶ
൨. The 

unknown functions φ and ψ are the functions related with the shear slopes. According to the classical 

exponential shear deformation plate theory, the governing equations for buckling analysis of a rectangular 

plate can be written as [13], 
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(6) 
In order to find the governing equations for studying rectangular nanoplates with considering the internal 
length constant, the following mathematical formulations are used,   
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The following equations can be obtained if the above equations are integrated; 
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At this step, through differentiating of the above equations, some terms in classical exponential shear 

deformation theory will appear considering the gradient constant. As the last step, by adding the above 

equations with considering the classical governing equations, the exponential shear deformation equations 

will achieve based on the strain gradient elasticity theory in investigating nanoplates.  

     

),(222

2

:)14(2)13()12(

2

3

2

3

532

5

4

5

44

5

32

5

4

3

3

2

3

25

5

23

5

12

3

3

3

223

5

5

5

1
6

2

3

2

3

43

3

12

3

12

3

13

3

1
4

2

2

2

2

2

yxq
xyyx

Q
D

yxyx

Q
D

xyxy

Q
D

yyx

Q
vD

yyx

Q
vD

xy
v

x

Q
D

xy
v

x

Q
DwD

xyyx

Q
D

y
D

yx

Q
vD

xy
vD

x

Q
DwD

equation
yx

equation
y

equation
x














































































































































































 

(20) 

     

 

0

22

1

2

:)18()17()15(

112

2

102

2

10

2

2

2

93

4

4

4

84

5

43

4

22

4

832

5

4

2

2

2

732

5

13

4

4

4

64

5

5

5

1

10

2

2

2

82

3

4

2

62

3

12

2

63

3

1




















































































































































































QD
y

Q
D

x

Q
D

yxy

Q
D

yxy

Q
D

yx

w
D

xyyx

Q
D

xy

w
D

yx
v

x

Q
D

xy

w
vD

yx
v

x

Q
D

yx

w
v

x

w
D

QD
yxy

Q
D

yx

w
D

xy
vD

yx

w
vD

x

Q
D

x

w
D

equationequation
y

equation
x







  

(21) 

     

 

0

22

1

2

:)19()17()16(

112

2

102

2

102

22

922

5

3

4

8

32

5

44

4

3

4

84

5

4
2

22

7

32

5

14

4

3

4

65

5

4

5

110

2

22

82

3

42

2

63

3

1

2

62

3

1
























































































































































































D
y

D
x

Q
D

xyx

Q
D

yxyx

Q
D

yx

w
D

xxy

Q
D

xy

w
D

yyx

Q
vD

yx

w
vD

yxy

Q
vD

y

w

xy

w
vDD

xyx

Q
D

xy

w
D

y
D

y

w
D

yx

Q
vD

xy

w
vD

equationequation
x

equation
y

  

(22) 



M. R. Nami and M. Janghorban 
 

October 2014                                                                           IJMF, Iranian Journal of Materials Forming, Volume 1, Number 2 
 

8 

It is important to mention that from equation (20), one can easily obtain the gradient Kirchhoff plate 

theory which was presented by Papargyri-Beskou and Beskos [12] as follow, 
 

),(64 yxqwDwD                                                                                                                                                        

.                                                                                                                                                                   (23) 

Now, consider a simply supported rectangular nanoplate under transverse loading. One of the major 

difficulties in using strain gradient theory is finding non-classical Boundary conditions [21]. This reason 

may cause researchers to rarely use gradient theory for nanoplates and they usually use nonlocal theory 

however the results of strain gradient seems to be more accurate in comparison with the nonlocal theory. 

Moreover there isn't any way to find nonlocal parameters without experimental test and MD but one can 

find different methods for finding gradient parameters. Based on the explanations mentioned above, it is 

important to use gradient theory. The present research suggested a simple method to use gradient theory. It 

was assumed that the unknown boundary conditions are satisfied with Navier solution. To prove this 

assumption then, the results were verified with the results of Papargyri-Beskou et al [12, 21] . As the 

results are in a good agreement with their results so it is found that the assumption was correct. Based on 

the Navier approach [24], the solutions were assumed as 
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The components of stiffness matrix can be found in the Appendix.   
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4. Numerical results 

Consider a simply supported all-around rectangular nanoplate with sides a and b along the x and y 

directions with constant thickness h subjected to transverse loading. In the present research, the Young's 

modulus is assumed to be 30 GPa and the Poisson's ratio is assumed to be 0.3. In Fig. 1, a simply 

supported square rectangular nanoplate subjected to uniform pressure is considered. The comparison study 

demonstrates that the deflections obtained using the present new strain gradient elasticity theory and other 

gradient theories are almost identical. In this figure, the deflection ratios can be defined as follow, 

Deflection	ratio ൌ
Deflection	using	strain	gradient	theory

Deflection	using	local	theory
 

and the normalized gradient coefficient is 
௟

௔మ
. In Table 1, our results for macro plates are compared with 

the results of classical plate theory. Although we verified our results in Fig. 1 but this table may be helpful 

for understanding the differences between our theory and classical plate theory.  
 

 
Fig. 1. Normalized central deflection of a square simply supported gradient elastic plate under a uniformly  

distributed lateral load versus the normalized gradient coefficient. 

 
Table 1. Comparing the results with the results of classical plate theory for macro plates 

   b/a   
 1 2 3 4 5 

     
Present 0.08127 0.2183 0.2872 0.3204 0.3381 

CPT 0.09342 0.2391 0.3026 0.3310 0.3455 

      

In Fig. 2, the influences of both thickness to length ratio and normalized gradient coefficient on the 

deflection of simply supported square nanoplates under sinusoidal loading are demonstrated. It can be 

seen that by increasing of the thickness of the nanoplate from thin to moderately thick plate, the maximum 

displacement ratios does not change too much but by increasing the gradient coefficient, the displacements 

decrease rapidly although for normalized gradient coefficient of more than 0.08, the slopes are going to be 

zero for both thin and thick nanoplates.  
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Fig. 2. Normalized central deflection of thin and moderately thick square nanoplate under sinusoidal loading. 

    
Figure 3 illustrates the effect of aspect ratio on the deflection ratios of simply supported nanoplate 

subjected to uniform load. As the figure indicates, when the aspect ratio increases it makes the deflection 
ratios decrease. In addition, it can be seen that the gradient coefficient effect in square nanoplate is more 
significant in comparison with rectangular nanoplate. It can be found easily form Figs. 1-3 that local plate 
theories cannot apply to nanoplate in general and the small scale effects should be considered in most of 
nanoplate studies. Similar results can be found in the literature, too [18-20].  

 
 Fig. 3. Normalized central deflection of square and rectangular nanoplates under uniform load. 

 

According to the author's opinion, it is not sufficient to study the nonlocal to local deflection ratio and the 
deflections of nanoplates should be investigated since the behaviors of these two parameters are not the 
same. It is noted that the nonlocal to local deflection ratio can only be used to show the importance of 
considering size effects in studying nano structures. In Fig. 4, the effects of static gradient parameter and 
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aspect ratio on the transverse displacement to thickness ratio are shown. It can be seen that by increasing 
the gradient parameter, the displacement to thickness ratio will decrease however, by increasing the aspect 
ratios, the displacement to thickness ratio will increase. Figure 5 depicts the influences of gradient 
parameter and length to thickness ratio on the static analysis of nanoplates. It is figured that by increasing 
the length to thickness ratio, the transverse displacement to thickness ratio will also increase. From this 
figure, it is found that in lower length to thickness ratios, the influences of gradient parameter may be 
ignored. From Figs. 3 and 5, one can also find the behaviors of the nonlocal to local deflection ratio and 
understand that the deflections of nanoplates are not similar to each other. 

 
Fig. 4. The effects of different parameters on the displacement to thickness ratio. 

  
Fig. 5. The effects of different parameters on the displacement to thickness ratio. 

 
5. Conclusion 

This study presented a strain gradient elasticity formulation of exponential shear deformation theory to 
analyze the static behavior of rectangular nanoplates. Navier solutions for flexure analysis of simply 
supported rectangular nanoplates were presented. Numerical comparison was presented to validate the 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gradient parameter

W

b/a=0.5

b/a=0.7

b/a=0.9

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gradient parameter

W

a/h=20
a/h=50
a/h=100



M. R. Nami and M. Janghorban 
 

October 2014                                                                           IJMF, Iranian Journal of Materials Forming, Volume 1, Number 2 
 

12

accuracy of the present method. The effects of gradient coefficient on the bending behavior of rectangular 
nanoplates were investigated in numerical examples. It was established that by increasing the gradient 
coefficient, the deflections will decrease for both thin and thick rectangular nanoplates. 
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Appendix 

The components of stiffness matrix can be expressed as follow, 
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