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Abstract: Casting is considered as a major manufacturing process. Thermal analysis of a 

solidifying medium is of great importance for appropriate design of casting processes. The 

conventional governing equation of a solidifying medium is based on the Fourier heat conduction 

law, which does not account for the phase-lag between the heat flux and the temperature gradient. 

In this paper, the concept of phase-lag during the phenomenon of solidification is investigated. 

This concept is considered by utilization of the hyperbolic heat conduction equation, known 

generally as the Maxwell–Cattaneo relation. In this way, the effect of finite heat wave speed on the 

thermal behavior of a solidifying medium is studied. In this context, some numerical example 

problems are analyzed with the meshless radial point interpolation method. The effect of the 

relaxation time on the thermal behavior of the solidifying medium is investigated. Moreover, the 

results of Fourier and non-Fourier heat conduction equations are compared. It is observed that 

based on the specific solidification process and the amount of relaxation time, the results of the 

Fourier and non-Fourier conduction laws can be quite different. The most prominent effect of the 

relaxation time is to alter the initiation of the solidification at each point.           
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1. Introduction 

The phenomenon of heat transfer accompanied by the change of phase is known as solidification or 

melting. The phase-change problems are accompanied by the liberation or absorption of energy. A moving 

interface exists between the two phases of material, with an abrupt difference in thermo-physical 

properties of the matter on the sides of the interface. Therefore, such problems are usually referred to as 

the moving boundary problems. Phase change problems are important to many engineering applications 

such as materials processing, purification of metals, growth of pure crystals from melts and solutions, 

solidification of castings and ingots, welding, electroslag melting, zone melting, thermal energy storage, 

ice making, aerodynamic ablation, and many other applications. 

Numerous research works can be found in the literature that deal with the analytical as well as 

numerical analysis of the solidification problems. Due to the complicated nature of the solidification 

phenomenon, for most practical cases no analytical solutions can be found. Consequently, the numerical 

methods are usually the only available tool for the analysis of such problems. Among the numerical 

methods, meshless techniques are best suited for the analysis of moving boundary problems [1]. Vertnik 

and Sarler [2] developed a new local radial basis function collocation method (LRBFCM) for the analysis 

of solid-liquid phase change systems. Later, Kosec and Sarler [3] applied the mentioned method to the 

analysis of coupled heat transfer and fluid flow problems with solid-liquid phase change. In that work, the 

problem of melting/freezing of a pure substance was solved in primitive variables on a fixed grid with 

convection suppression, proportional to the amount of the solid fraction. Vertnik et al. [4] used an upgrade 

of the classical meshless Kansa method for the solution of transient heat transport in direct-chill casting of 

aluminum alloys. The problem was characterized by a moving mushy domain between the solid and the 
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liquid phases and a moving starting bottom block that emerged from the mold during the process. Zhang et 

al. [5] used the finite point method (FPM) for modeling metal solidification processes in continuous 

casting. Zhang et al. [6] used the FPM along with the meshless local Petrov-Galerkin method for 

numerical simulation of solidification process and evaluation of thermal stresses of continuous casting 

billet in mold. Zhihua et al. [7] employed the element free Galerkin (EFG) method for the analysis of heat 

transfer problems with phase change. The method was then utilized for solution of the thermal problem 

involving phase change in permafrost embankment. Smoothed particle hydrodynamics (SPH) method has 

been also used for the simulation of solidification process [8]. Zhang et al. [9] developed an SPH 

formulation for simulation of free surface and solidification problems. 

More recently, Yang and He [10] presented a new smoothing method for modeling the effective heat 

capacity in the EFG method. They used the proposed method for the analysis of solidification problems. 

Alizadeh et al. [11] exploited the FPM to simulate the solidification process of continuously cast steel 

bloom in both primary and secondary cooling regions. To validate their results, the solidified shell 

thickness simulated by the FPM was compared with the solidified shell, measured on a breakout bloom. 

Kosec and Sarler [12] applied the LRBFCM to the solution of the freezing process with convection in the 

liquid phase for a metal-like material in a closed rectangular cavity. To avoid inclusion of additional 

boundary conditions at the fluid-solid interface, the enthalpy one-domain formulation was used. 

Furthermore, in order to avoid numerical instabilities, the freezing of a pure substance was modeled by a 

narrow phase change interval. Sarler et al. [13] developed a new meshless solution procedure for 

calculation of one-domain coupled macroscopic heat, mass, momentum and species transfer problems as 

well as phase-field concepts of grain evolution. The solution procedure was defined on the macro as well 

as on the micro levels by a set of nodes, which could be non-uniformly distributed. The concept and the 

results of the proposed multi-scale solidification modeling were compared with the classical mesh-based 

approach. Thakur et al. [14] discussed the application of the MLPG method to phase change problems. 

Apparent capacity method based on the enthalpy formulation was used in their work. Kosec et al. [15] 

investigated the macro-segregation as a consequence of solidification of a binary Al-4.5%Cu alloy in a 2D 

rectangular enclosure. Reutskiy [16] presented a meshless numerical technique for solving one and two-

dimensional Stefan problems. The presented technique was based on the use of the delta-shaped functions 

and the method of approximate fundamental solutions (MAFS) which was originally suggested for solving 

elliptic problems and heat equations in domains with fixed boundaries. Vertnik and Sarler [17] solved an 

industrial benchmark test problem by a meshless method. In their work, a mixture continuum model was 

used to treat the solidification system. Kumar et al. [18] made use of the immersed boundary method for 

continuous casting simulation involving boundary movement. In their methodology, the immersed 

boundary method was coupled with the second-order accurate finite difference solution of unsteady three-

dimensional heat conduction equation. 

In almost all of the present works, the phenomenon of phase change is modeled by the classical 

parabolic diffusion energy equation. The classical diffusion energy equation is based on the Fourier law of 

heat conduction, which implies an immediate response for the conduction heat flux to the temperature 

gradient at each point. In other words, in the Fourier model, it is assumed that the heat wave propagates 

with an infinite speed. Less attention has been paid to applications of phase-change problem in which the 

heat wave propagates at a finite speed [19–21]. As an example of such applications, laser and microwave 

incident energy can be named which involve large temperature gradients over small time durations [22]. 

Other applications involve rapid freezing of tissue cells during cryopreservation. Cryopreservation is a 

process in which cells, whole tissues, or any other substance susceptible to damage caused by chemical 

reactivity or time, are preserved by cooling to sub-zero temperatures. In this process, biological systems 

are exposed to extremely high cooling rates (thousands of °C/min), which leads to solidification [23]. The 

http://en.wikipedia.org/wiki/Biological_tissue
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cryopreservation is widely used in stem cell research [24, 25], preservation of organs for transplant [26] 

and tissue products storage and transportation [27]. 

There are a limited number of works in the literature that deal with hyperbolic heat conduction during 

solidification. Sobolev [19] has considered a local non-equilibrium model for heat transport around 

melting and crystallization zone induced by ultra-fast laser irradiation. It was concluded that the local non-

equilibrium effects lead to an interface temperature gradient that is steeper than expected from the 

classical heat conduction equation. Vedavarz et al. [20] theoretically analyzed the transient temperature 

distributions in laser-irradiated materials by considering a hyperbolic heat conduction model. In their 

study, hyperbolic non-Fourier models have been introduced to account for the finite speed of the thermal 

wave. Glass et al. [21] derived interface condition for hyperbolic phase change problems, which includes 

sensible heat at the interface, as an extension of the interface condition for standard parabolic phase-

change problems. They presented the enthalpy formulation of the hyperbolic Stefan problem and it was 

used to numerically solve for the temperature distributions and the interface position. Siraj-ul-Islam et al. 

[28] proposed an improved localized radial basis functions collocation method for the numerical solution 

of hyperbolic partial differential equations which govern the non-Fourier heat conduction. 

In the present work, the meshless radial point interpolation method (RPIM) is utilized for the analysis 

of non-Fourier heat transfer in the solidification process. Some typical problems are numerically solved, 

and the effect of finite heat wave speed on the behavior of a solidifying medium is investigated. 

 

2. Problem Formulation 

The classical parabolic heat conduction equation is based on the Fourier law of heat conduction, which 

states that the conductive heat flux is instantaneously proportional to the temperature gradient, i.e.: 
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                                                                                        (1) 

In contrast, the hyperbolic heat conduction equation is based on the Maxwell–Cattaneo relation, which 

accounts for a time lag between the heat flux and the temperature gradient. This constitutive model is 

sometimes referred to as the non-Fourier law of heat conduction. To account for the finite heat wave speed 

in the non-Fourier law of heat conduction, the following heat flux model is considered: 
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where q is the heat flux, k is the thermal conductivity, and τ is the so-called thermal relaxation time. This 

constitutive law assumes that the effect (heat flux) and the cause (the temperature gradient) do not occur 

simultaneously. The delay between the effect and the cause in this situation is known as the relaxation 

time. Expansion of the heat flux in Eq. (2) with respect to time, results in the Maxwell–Cattaneo relation 
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Introducing Eq. (3) into the energy balance equation, 
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leads to the hyperbolic heat conduction equation: 
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where c is the specific heat, and ρ is the mass density. Eqs. (1) through (5) are written for a one-

dimensional medium, however they can be readily generalized for two-dimensional media as well. The 

hyperbolic heat conduction equation for a 2D domain can be written as follows: 
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Presence of the second-order time derivative of the temperature in Eqs (5) and (6) allows for propagation 

of thermal disturbances with a finite velocity. This additional time derivative is sometimes called the 

thermal inertia [19]. It should be noted that the presence of the second-order time derivative makes it 

necessary to supplement Eq. (5) with an additional initial condition, i.e. 
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2.1. The hyperbolic solidification equation 

The classical problem of heat flow involving a change of phase is the one-dimensional freezing problem 

first posed by Stefan in 1889. A material which can exist in two phases (liquid and solid) fills the half 

space 0x . For times 0t  the material is in the liquid phase at a constant temperature 

mTTxT  2)0,( , where mT  is the phase change temperature. At time 0t  the temperature of the 

surface 0x  is instantaneously lowered and maintained at mTTtT  1),0( . This will cause a layer of 

solid to be formed adjacent to the surface 0x  and as time progresses this layer will further expand. The 

Stefan problem is to follow the solid/liquid interface )(tXx   as it moves forward. Figure 1 depicts the 

geometry and coordinates for such a one-dimensional solidification problem. 

The thermal behavior of the system during the solidification can be described by Eq. (5) for each phase, 

along with an energy balance for the moving interface [22]: 
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where ck    is the thermal diffusivity, L is the latent heat of solidification, and the subscripts s and l 

refer to the solid and liquid phase, respectively. 

 

 
Fig. 1. The geometry and coordinates of the 1D solidification problem. 
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Equations (8) to (10) are the governing equations of the solidification phenomenon in a 1D medium with 

the concept of finite heat wave speed. These equations can be incorporated into a single equation by 

introducing the enthalpy function [23]: 
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For 2D domains this equation reads 
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where H is the enthalpy function or the total heat content, which for the isothermal phase change is 

defined as: 
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and for phase change occurring over a finite temperature range, the enthalpy function is written as: 
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In the preceding equation, fc  is the specific heat in the freezing interval, dTdL  is the variation of latent 

heat in this interval, and are defined as follows, respectively: 
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In Eqs (14) through (16) sT  is the solidus temperature, and lT  is the liquidus temperature. 

In the present work, the meshless RPIM [29, 30] is used for the solution of governing equation of 

solidification with finite heat wave speed. Since the solidification problem is inherently transient, the 

numerical solution of the discretized system of equations is carried out by standard time integration 

techniques. In this paper, the Crank-Nicolson scheme is used, which is unconditionally stable. That is, 

irrespective of the time step size, the results are stable. Additionally, because the solidification process is 

nonlinear, the system of equations should be solved iteratively. This means that the time step size in each 

step of the analysis is varied to obtaine a converged solution. Therefore, in the present approach both the 

stability and convergence of the solution is guaranteed. 

 

3. Numerical Examples, Results, and Discussion 

In this section, two typical numerical examples of solidification process are presented. The phase change 

problem in both examples is analyzed by the Fourier as well as non-Fourier heat conduction law. Different 
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phase lag times are considered in order to investigate its effect on the solidification process. In the first 

example, solidification of a semi-infinite region is investigated by considering a one-dimensional 

computational model. The second example deals with a common solidification process, i.e. the continuous 

casting. For both models a generic material is considered in the analyses. 

3.1. Example 1: solidification of a semi-infinite region 

As the first example, a 1D solidification problem in a semi-infinite region is analyzed by the meshless 

RPIM. The problem geometry is shown in Fig. 1. Both the parabolic and hyperbolic heat conduction 

equations are utilized for the analysis of the problem and the results are compared. In the case of the 

hyperbolic heat conduction, three different relaxation times are selected to investigate its effect on the 

thermal behavior of the solidifying medium. 

For numerical modeling of the problem domain, the infinite region is represented by a finite domain, 

extending from 0x  to 1x , and the problem domain is modeled by 160 regularly spaced nodes. 

For obtaining numerical solutions of the one-dimensional solidification problem, the following generic 

data in SI units are used: 
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Figure 2 depicts the temperature variation with respect to time at m 25.0x . In this figure, the 

results of parabolic and hyperbolic heat conduction equations are compared. The results obtained by 

considering two different relaxation times, i.e. 75.0  and 5.1  msec, are depicted in this figure. 

 

 
Fig. 2. Time history of temperature at m 25.0x , example 1. 

Expectedly, as the relaxation time increases, so does the deviation of temperatures obtained by the 

parabolic and hyperbolic equations. Fig. 2 implies that the temperatures obtained by considering Fourier 

and non-Fourier heat law have a greater discrepancy at the beginning of the solidification progress. As 

time progresses the difference between the predicted temperatures of the two methods decreases. 

Another observation from Fig. 2 is that the value of temperature at each instant of time increases as 

the relaxation time becomes greater. This is due to the amount of time lag in the diffusion of thermal 

wave. In the case with larger relaxation time, it takes more time for the heat wave to reach a point, and 

therefore, the solidification occurs at a larger instant of time. 

Figure 3 depicts the time history of temperature at m 15.0x . This figure shows the same 

characteristics as those of Fig. 2. However, since the position of the point under investigation is now 
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closer to the boundary, the intensity of the heat flux is larger. As a result, the effect of the relaxation time 

on the results is more than the previous case. By comparing the two figures, it is observed that the 

deviation of the results of the hyperbolic equation from the parabolic equations is larger for the points, 

which are closer to the boundary. 

Figure 4 depicts the position of the solidification front versus time. In this figure, the results obtained 

by considering three different values of relaxation time are presented. This figure clearly demonstrates the 

concept of time lag during solidification. The relaxation time causes the solidification front to lag behind. 

This means that when the concept of relaxation time is introduced in the governing equations of the 

solidification, the heat wave travels at a lower speed in comparison with the classical heat conduction 

equation. 

 

 
Fig. 3. Time history of temperature at m 15.0x , example 1. 

 

 

Fig. 4. Solidification front position for different values of relaxation time. 

The temperature distribution within the problem domain at two instants of time is plotted in Fig. 5. 

This figure depicts the temperatures obtained by different values of relaxation time. Similar observations 

can be made from this figure. Firstly, the effect of relaxation time on the temperature distribution at 

02.0t  sec is much more than that at 04.0t  sec. Consequently, it is inferred that the effect of 

relaxation time is more important in the initial stages of solidifications. Furthermore, it is observed that 

due to the finite speed of heat wave, the value of temperature at each point is larger for higher relaxation 

times. 
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Fig. 5. Distribution of the temperature in the problem domain at (a) 02.0t  sec, and (b) 04.0t  sec. 

3.2. Example 2: The continuous casting process 

In this example, a solidification problem associated with the continuous casting process is analyzed by the 

meshless RPIM. The problem geometry and boundary conditions are depicted in Fig. 6. It should be 

mentioned that because of the symmetry of the continuous casting model, only a quarter of the problem 

domain is modeled and analyzed. 
 

 
Fig. 6. Problem geometry and boundary conditions of the continuous casting process, example 2. 

The material properties of this example problem are the same as those used in the previous example. The 

whole material is initially at 1.0lT  and the process is analyzed in a time duration of 0.1 sec. The heat 

flux shown in Fig. 6 accounts for all sorts of heat transfer to and from the medium, i.e. the radiative and 

convective heat fluxes are both accounted for in the heat flux q. Naturally, the insulated surfaces are 

implemented by considering a zero flux on the corresponding boundaries. 

Three different relaxation times of 1, 5, and 10 msec are selected for this analysis. The problem is 

also analyzed by the parabolic heat conduction equation, i.e. with zero time lag. The time history of 

temperature for a point at  5.0,5.0  is depicted in Fig. 7. This figure compares the variation of 

temperature obtained by the Fourier and non-Fourier heat conduction laws. Here again, it is observed that 

when the relaxation time is taken into account, the solidification occurs at a later time instance. 

The temporal variation of the temperature for a point closer to the cooling boundaries of the problem 

domain, i.e. at  8.0,8.0 , is plotted in Fig. 8. From Figs 7 and 8 it is concluded that the effect of the 

relaxation time on the evolution of the casting process is significant and therefore cannot be neglected. 
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Fig. 7. Time history of temperature at )5.0,5.0(),( yx , example 2. 

 
Fig. 8. Time history of temperature at )8.0,8.0(),( yx , example 2. 

In order to visualize the progress of the solidification process during the time, contours of temperature at 

different time instances are plotted in Fig. 9. The results shown in this figure correspond to the case with 

the relaxation time of 10 msec. The isotherms shown in Fig. 8 are computed at time instances of 0.025, 

0.05, and 0.1 sec.  
 

 
Fig. 9. Contours of temperature at (a) sec 025.0t , (b) sec 05.0t , and (c) sec 1.0t  for the continuous 

casting process with msec 10 . 



A. Khosravifard and M. R. Hematiyan 

 

October2016                                                                            IJMF, Iranian Journal of Materials Forming, Volume 3, Number 2               

22 

The position of the solidification front, i.e. the contour of sTT  , at the end of the problem analysis is 

demonstrated in Fig. 10. In this figure the solidification fronts at sec 1.0t  for different relaxation times 

are shown. It is clear that as the relaxation time increases the casting process slows down. This means that 

more time is required to solidify the same amount of material. 
 

 
Fig. 10. Position of the solidification front for different values of relaxation time in continuous casting process. 

4. Conclusion 

In this paper, the effect of finite heat wave speed on the thermal behavior of a solidifying medium was 

investigated. The meshless RPIM was utilized for the numerical analysis of the Fourier, as well as non-

Fourier heat conduction accompanied by phase-change. It was observed that the results of the hyperbolic 

and parabolic heat conduction equations can be different considering the amount of relaxation time. In 

general, the following conclusions were drawn: 

 Through the numerical examples, it was concluded that the effect of relaxation time is more 

clearly seen at locations where the heat flux is larger.  

 It was also concluded that as the relaxation time increases, so does the delay in the initiation of the 

solidification at each point. 

 The most prominent effect of the hyperbolic heat conduction law is to postpone the initiation of 

the solidification at each point, i.e., more time is required for each point to solidify. 

 The position of the solidification front predicted by the non-Fourier law is always behind of the 

predictions obtained by the Fourier law.  
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 گری با در وظر گرفته اوتقال حرارت غیر فًریٍ فرآیىذ ریختٍتحلیل بذين المان 
 

 *، هحوذ رحین ّوتیاى*اهیز خسزٍی فزد

 داًشکذُ هٌْذسی هکاًیک، داًشگاُ شیزاس، شیزاس، ایزاى *

 
اًدواد بزای طزاحی  شَد. تحلیل حزارتی یک هحیط در حال گزی بعٌَاى یکی اس فزآیٌذّای هْن تَلیذ شٌاختِ هی ریختِ چکیذٌ:

گزی دارای اّویت فزاٍاًی است. هعادلِ حاکن هتذاٍل یک هحیط در حال اًدواد بز پایِ قاًَى ّذایت حزارت  هٌاسب فزآیٌذ ریختِ

شَد. در ایي هقالِ، هفَْم تأخیز فاس در  فَریِ است کِ در آى، تأخیز سهاًی ها بیي شار حزارتی ٍ گزادیاى دها در ًظز گزفتِ ًوی

گیزد. ایي هفَْم را با استفادُ اس هعادلِ ّذایت حزارت ّذلَلَی، کِ عوَهاً تحت عٌَاى هعادلِ  ذُ اًدواد هَرد بزرسی قزار هیپذی

ط در کٌین. بِ ایي تزتیب، اثز سزعت هحذٍد هَج حزارتی بز رفتار حزارتی یک هحی شَد، لحاظ هی کاتاًیَ شٌاختِ هی –هاکسَل 

ای شعاعی تحلیل  یابی ًقطِ گیزد. در ایي سهیٌِ، چٌذ هثال عذدی تَسط رٍش بذٍى الواى درٍى حال اًدواد هَرد هطالعِ قزار هی

شَد، ّوچٌیي، ًتایح هعادلات ّذایت حزارت  شَد. اثز هذت سهاى تأخیز فاس بز رفتار حزارتی هحیط در حال اًدواد هطالعِ هی هی

شَد کِ با تَخِ بِ هسألِ خاص اًدواد هَرد بزرسی ٍ ًیش هذت سهاى تأخیز  گزدد. هشاّذُ هی یکذیگز قیاس هیفَریِ ٍ غیز فَریِ با 

تزیي اثز  تَاًذ تفاٍت سیادی داشتِ باشذ. هْن فاس در ًظز گزفتِ شذُ، ًتایح حاصل اس قَاًیي ّذایت حزارت فَریِ ٍ غیز فَریِ هی

 در ّز ًقطِ است.تأخیز فاس بِ تعَیق اًذاختي شزٍع اًدواد 

 
 ای شعاعی یابی ًقطِ تغییز فاس، ّذایت حزارت غیز فَریِ، رٍش بذٍى الواى درٍى کلمات کلیذی:

 


