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Abstract: In this research, a radial basis function artificial neural network (RBF-ANN) model was 

developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the 

developed model were compared with the results of a new phenomenological model that has 

recently been developed based on a power function of Zener-Hollomon parameter and a third 

order polynomial function of strain power m (m is a constant). Root mean square error (RMSE) 

criterion was used to assess the prediction performance of the investigated models. According to 

the results obtained, it was shown that the RBF-ANN model has a better performance than that of 

the investigated phenomenological model. Very low RMSE value of 0.41 MPa was obtained for 

RBF-ANN model, which was less than one-tenth of the RMSE value of 4.74 MPa obtained for the 

investigated constitutive equation. The results can be further used in mathematical simulation of 

hot metal forming processes.           
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1. Introduction 

Careful modeling of the flow curves of different materials at elevated temperatures is the first step in 

mathematical simulation of hot deformation processes such as hot rolling and hot forging. Thus, many 

research have been conducted to model the flow curves of different materials [1-4].  A critical review on 

these efforts can be found in Ref. [5]. Phenomenological , physical-based and artificial neural network 

(ANN) models are the main procedures that have ever been used for flow stress modeling [5]. In 

phenomenological constitutive models, regression analysis is used to adjust the constants of a predefined 

mathematical function so as to fit it over the experimental flow curves. Johnson- Cook [1], Arrhenius 

equation with strain dependent constants [6, 7] and exponential one with strain dependent constants [8] are 

some examples of this category. In contrast, physical-based constitutive models are the ones which 

consider the mechanisms of deformation such as dislocation dynamics, thermal activation and so on. 

Zerilli-Armstrong [9] Voyiadjis–Almasri [10] and a two-stage constitutive model developed based on the 

classical stress–dislocation relation and the kinetics of dynamic recrystallization [11] are some examples 

of physical-based models. The latter model has been used to model the hot deformation flow curves of 

42CrMo steel [11] and a typical nickel-based superalloy [12]. Recently, artificial neural network, have 

widely been used in different scopes of engineering applications [13], as well as, in hot deformation flow 

curves modeling. The higher accuracy of ANN models over the constitutive models such as Arrhenius, 

Johnson-Cook (JC) and modified Zerilli- Armstrong (ZA) models for modeling the flow curves of an 

Al/Mg based composite has been shown by Senthilkumar et al. [14]. Based on the experimental results 

obtained from isothermal compression testing, Zhu et al. [15] developed an ANN model with a back-

propagation learning algorithm to predict the flow curves of as-cast TC21 titanium alloy. They showed the 

higher prediction performance of the developed ANN model over a regression method. Mirzadeh et al. 

[16] developed a feed-forward ANN model to predict the flow curves of different steel types including 17-

4 PH martensitic precipitation hardening stainless, a medium carbon microalloyed and a 304 H austenitic 
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stainless steel. They compared the results of the developed ANN model with the results of the hyperbolic 

sine equation with strain dependent constants and a constitutive equation with simple normalized stress-

normalized strain form. They found the ANN model as the best technique for modeling the available flow 

curves [17]. These, together with the other associated published works [17-22] show the ability of ANN 

techniques to model the hot deformation flow curves of different materials.   

In this study, a radial basis function artificial neural network (RBF-ANN) model is used to predict the 

hot deformation flow curves of API X65 pipeline steel. The results of the developed RBF-ANN model are 

compared with the results of a new simple phenomenological model that has recently been developed 

based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain 

power m (m is a constant) [23, 24]. The tested steel is a high strength low-alloy (HSLA) one that is used in 

Iran high-pressure gas transportation pipelines [25]. The chemical and mechanical specifications of this 

steel are characterized by API standard code [26].   
 

2. Experimental Procedure 

2.1. The experimental flow curves 

The experimental flow curves of API X65 pipeline steel, obtained from hot compression tests at different 

temperatures and strain rates (as shown in Fig. 1 [25]) were used to develop a radial basis function 

artificial neural network (RBF-ANN) model to predict the hot deformation flow curves of tested steel. The 

details of the tensile testing equipment and conditions have been reported in Ref. [25]. As can be seen in 

most deformation conditions, the flow stress increases to a peak value and then gradually falls to a steady 

state stress that is the common pattern of dynamic recrystallization (DRX) occurrence. Though, for the 

most severe deformation condition with the temperature of 950 °C and the strain rate of 1 s
-1

, true stress–

true strain curve shows a typical dynamic recovery (DRV) behavior [25]. 

  
(a) (b) 

  

(c) (d) 

 
(e) 

Fig. 1. Experimental flow curves of API X65 pipeline steel at different temperatures of (a) 950, (b) 1000, (c) 1050 

(d) 1100 and (e) 1150 °C with different strain rates[25]. 
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2.2.Radial basis function artificial neural network 

A RBF-ANN was developed to predict the hot deformation flow curves of API X65 steel. Also, the results 

of the developed RBF-ANN were presented and compared with the results of the newly developed 

phenomenological equation published in Ref. [23]. 

2.2.1. The structure of the radial basis function artificial neural network 

An ANN is composed of a large number of highly interconnected processing elements, called neurons, 

working together to solve a specific problem [27]. The radial basis function artificial neural networks are 

three layer networks usually with a Gaussian transfer function in the hidden layer and a linear transfer 

function in the output layer. The structure of the radial basis function artificial neural networkapplied in 

this research is depicted in Fig. 2.  

 
Fig. 2. The structure of the radial basis function artificial neural network, applied in the current work. 

As explained elsewhere [28-30], in the RBF_ANNs, the input vectors are fed into the first layer of the 

network. The hidden layer is the second layer of RBF_ANNs that is composed of a set of neurons with 

Gaussian transfer function to measure the Euclidean distance between the centers of the hidden layer (μk; k 

= 1 to L) and the input vector (xi; i = 1 to N). Hence, the output of the hidden layer neurons is calculated 

from: 

  ( )     ( 
‖    ‖

 

  
 )                                                                                                                                 (1) 

where‖    ‖ is the Euclidean distance between the kth center of the hidden layer and the input vector of 

x and is calculated from ‖    ‖  √∑ (     )
  

   ), where σk is the spread of the kth neuron of the 

hidden layer and controls the sensitivity of it to the Euclidean distance. The third layer of the RBF_ANNs 

is the output layer. Usually, a linear transfer function is used in this layer that returns the value passed to 

it. Thus, the output of a RBF_ANN with a single output variable is equal to the weighted sum of the 

outputs of the hidden layer: 

  ∑     ( )
 
                                                                                                                                             (2) 

where,    is the connecting weight of the kth neuron of the hidden layer to the output variable of the 

network (y). 

2.2.2. Data base 

The experimental stress-true strain curves obtained at different deformation temperatures and strain rates 

[25] were sampled for the different strains in the range of 0.1 to 0.7 with the step size of 0.01. Thus, a data 

base with the input variables of the deformation temperature, strain rate, strain and the output variable of 
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flow stress with 990 patterns was prepared. The prepared data base was divided into two subsets of 

training and testing. Two thirds of the overall data (i.e. 660 randomly selected patterns) was used for 

training and the rest was used for testing the generalization property of the developed neural network. 

2.2.3. Neural network training and testing 

After the construction of the neural network structure, a training algorithm is used to adjust the weights of 

the network so as to minimize the network mean square error (MSE) between the measured and predicted 

values of the output variable of the network, iteratively [28]: 

    
 

  
∑ (     )

  
                                                                                                                               (3) 

Where ti and yi are the target (actual) and predicted values of ith pattern of the output variable y, 

respectively and nis the number of data patterns used for training the network.  

Data normalization is one important way to improve the prediction performance of the neural 

networks. Especially, when the ranges of input variables are in different magnitudes, this is a necessary 

[31]. In the current study, the input variables were normalized by transformation to a new data set, with a 

zero mean and a unit variance (using “mapstd” function of MATLAB platform) [32].  In RBF-ANNs, the 

number of neurons in the hidden layer and the spread value are the main factors influence the prediction 

performance of the developed network [33]. The number of the neurons in the hidden layer can be simply 

considered equal to the number of training patterns. Thus, the error between the predicted and measured 

(actual) network outputs for the training subset can be equal to zero; but, the generalization property of the 

trained network may be lost. In this work, after some trial and error the number of neurons in the hidden 

layer was set to 160. It was found that the higher number of neurons causes not to improve in the 

performance of the developed network for training data but lowers the prediction performance of the 

trained network for testing (unseen) subset. The RMSE criterion was used to assess the prediction 

performance of the developed networks:  

     √
 

 
∑ (     )

  
                                                                                                                                (4) 

Where ti is the target output, yi is the model output and n is the number of overall data patterns. 

Furthermore, in the designing process of RBF-ANNs, it is needed to determine a proper spread value σ to 

control the sensitivity of hidden neurons [29]. In the other words, there is an optimum value for σ that after 

it, the performance of the developed RBF_ANN for the training data improves but decreases for the 

testing data. Here, to find the optimum value of spread (σ), different networks with different values of 

spread were trained and tested. The obtained results for training and testing patterns are shown in Fig. 3. 

 

 
Fig. 3. The results (RMSE values) obtained for training and testing patterns with different values of spread. 
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As can be seen, after the spread value of about 0.6 the developed model undergoes an over-fitting (i.e. no 

significant improve can be observed for training patterns; while, the RMSE value increases for testing 

patterns). As depicted, using the regression analysis, a second order polynomial function was fitted to the 

RMSE values obtained at different spreads for the testing data. The derivative of this polynomial function 

was set equal to zero to find an optimum spread value. Consequently, an optimized RBF_ANN, with the 

spread value of about 0.7 was obtained that was used to predict the hot deformation flow curves of API 

X65 pipeline steel. 

2.2.4. Results of the developed neural network 

The results of the developed RBF-ANN model with the spread value of 0.7 for training, testing and overall 

data patterns, in the shape of scatter diagrams, are presented in Fig. 4. As can be seen, there is an excellent 

agreement (with correlation coefficient value of R = 0.9999 for overall data) between the predicted and 

measured flow stresses. Furthermore, the low RMSE values of 0.31, 0.56, 0.41 MPa that were respectively 

obtained for training, testing and the overall data is the other evidence of this excellent agreement.  
 

   

 
Fig. 4. The results of the developed RBF-ANN model with the spread value of 0.7 for training, 

 testing and overall data patterns. 

A comparison between the experimental and predicted flow curves (using the developed RBF-ANN 

model) at deformation conditions with two temperatures of 1000 and 1100 °C with different strain rates is 

presented in Figs. 5a and 5b, respectively. As can be seen, there is an excellent fit between the RBF-ANN 

simulated and experimental flow curves that is the evidence of robustness of the developed RBF-ANN 

model. 
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(a) (b) 

Fig. 5. The comparison between the experimental and modeled flow curves (using the RBF-ANN model) at 

deformation conditions with two temperatures of (a) 1000 and (b) 1100 °C with different strain rates. 

2.3. Comparison of the results of the developed RBF-ANN model with the results of the investigated 

phenomenological model 

The under studied phenomenological model has been developed previously by the author [23] and was 

used to describe the hot deformation flow curves of API X65 pipeline steel. Using the equation developed 

based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain 

power a constant number the hot flow stress of API X65 pipeline steel can be expressed as follows [23]: 

   ̇        (
            

  
)  (                                        )                                                    (5) 

More details about finding the constants of this equation can be found in Refs. [23 and 24]. RMSE  

criterion was used to evaluate the prediction performances of the developed RBF-ANN model and 

investigated phenomenological model. According to the obtained results, it was found that the developed 

RBF-ANN model, with the RMSE value of 0.41 MPa, has a better performance than that of the 

investigated phenomenological constitutive equation. The obtained RMSE value for the developed RBF-

ANN model was less than one-tenth of the RMSE value of 4.74 MPa [23] obtained for the investigated 

constitutive equation. 

 

3. Conclusion 

In this work, a RBF-ANN model was developed to predict the hot deformation flow curves of API X65 

pipeline steel. The flow curves obtained from single hit compression testing at different deformation 

conditions were sampled. Consequently, a database with the input variables of deformation temperature, 

strain rate, strain and the output variable of flow stress was obtained. Accordingly, a RBF-ANN model 

was developed to model the hot deformation flow curves of tested steel. The prediction performance of the 

developed network was assessed and compared with the results of a recently developed constitutive 

equation, through the use of RMSE criterion. It was found that developed RBF-ANN model has better 

performance than that of the investigated constitutive equation (lower RMSE). Moreover, it was shown 

that using the developed RBF-ANN model, there is an excellent fit between the predicted and 

experimental flow curves (with correlation coefficient value of R = 0.9999 for overall data). This, together 

with very low RMSE value of 0.41 MPa obtained for overall data showed the robustness of the developed 

RBF-ANN model to predict the hot deformation flow curves of the tested steel in the temperature range of 

950 to 1150ºC and the strains between 0.01 to 1 s
-1

.  
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 API X65های سیلان کار گرم فولاد بینی منحنیجهت پیش RBF-ANNاستفاده از مدل 
 

 هسعَد رخش خَرشيد

 
 ایراى ،، بيرجٌدگرٍُ هكاًيك، داًشكدُ هٌْدسی هكاًيك ٍ هَاد، داًشگاُ صٌعتی بيرجٌد

  965/57179بيرجٌد، صٌدٍق پستی:

 
جْت پيش بيٌی هٌحٌی ّای سيلاى کار گرم فَلاد خط  RBF-ANNدر ایي تحقيك، از شبكِ عصبی تابع پایِ شعاعی چکیده: 

استفادُ شد. ًتایج شبكِ تَسعِ دادُ شدُ، با ًتایج یك هدل پدیداری کِ اخيراً بر هبٌای یك تابع تَاًی از پاراهتر  API X65لَلِ 

یسِ گردید. از هعيار ریشِ هياًگيي َّلَهَى ٍ یك تابع درجِ سَم از  کرًش بِ تَاى یك عدد ثابت تَسعِ دادُ شدُ است هقا-زًر

ّای هَرد هطالعِ استفادُ شد. با تَجِ بِ ًتایج بدست آهدُ، ًشاى دادُ شد کِ هدل  هربعات خطا جْت ارزیابی عولكرد هدل

RBF-ANN  هگاپاسكال برای هدل  14/0عولكرد بْتری ًسبت بِ هدل پدیداری هَرد هطالعِ دارد. هقدار خطای بسيار پایيي

RBF-ANN بدست آهدُ برای هعادلِ جاهع پدیداری هَرد هطالعِ بَد. از ًتایج  41/1دّن خطای -بدست آهد، کِ کوتر از یك

 دّی گرم استفادُ کرد.سازی فرآیٌدّای شكلتحقيك حاضر هی تَاى جْت شبيِ

 

 تغيير شكل گرم، شبكِ عصبی، تابع پایِ شعاعی، هعادلات جاهع، تٌش سيلاى. کلمات کلیدی:

 


