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A Robust RBF-ANN Model to Predict the Hot Deformation Flow
Curves of APl X65 Pipeline Steel
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Abstract: In this research, a radial basis function artificial neural network (RBF-ANN) model was
developed to predict the hot deformation flow curves of APl X65 pipeline steel. The results of the
developed model were compared with the results of a new phenomenological model that has
recently been developed based on a power function of Zener-Hollomon parameter and a third
order polynomial function of strain power m (m is a constant). Root mean square error (RMSE)
criterion was used to assess the prediction performance of the investigated models. According to
the results obtained, it was shown that the RBF-ANN model has a better performance than that of
the investigated phenomenological model. Very low RMSE value of 0.41 MPa was obtained for
RBF-ANN model, which was less than one-tenth of the RMSE value of 4.74 MPa obtained for the
investigated constitutive equation. The results can be further used in mathematical simulation of
hot metal forming processes.
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1. Introduction
Careful modeling of the flow curves of different materials at elevated temperatures is the first step in
mathematical simulation of hot deformation processes such as hot rolling and hot forging. Thus, many
research have been conducted to model the flow curves of different materials [1-4]. A critical review on
these efforts can be found in Ref. [5]. Phenomenological , physical-based and artificial neural network
(ANN) models are the main procedures that have ever been used for flow stress modeling [5]. In
phenomenological constitutive models, regression analysis is used to adjust the constants of a predefined
mathematical function so as to fit it over the experimental flow curves. Johnson- Cook [1], Arrhenius
equation with strain dependent constants [6, 7] and exponential one with strain dependent constants [8] are
some examples of this category. In contrast, physical-based constitutive models are the ones which
consider the mechanisms of deformation such as dislocation dynamics, thermal activation and so on.
Zerilli-Armstrong [9] Voyiadjis—Almasri [10] and a two-stage constitutive model developed based on the
classical stress—dislocation relation and the kinetics of dynamic recrystallization [11] are some examples
of physical-based models. The latter model has been used to model the hot deformation flow curves of
42CrMo steel [11] and a typical nickel-based superalloy [12]. Recently, artificial neural network, have
widely been used in different scopes of engineering applications [13], as well as, in hot deformation flow
curves modeling. The higher accuracy of ANN models over the constitutive models such as Arrhenius,
Johnson-Cook (JC) and modified Zerilli- Armstrong (ZA) models for modeling the flow curves of an
Al/Mg based composite has been shown by Senthilkumar et al. [14]. Based on the experimental results
obtained from isothermal compression testing, Zhu et al. [15] developed an ANN model with a back-
propagation learning algorithm to predict the flow curves of as-cast TC21 titanium alloy. They showed the
higher prediction performance of the developed ANN model over a regression method. Mirzadeh et al.
[16] developed a feed-forward ANN model to predict the flow curves of different steel types including 17-
4 PH martensitic precipitation hardening stainless, a medium carbon microalloyed and a 304 H austenitic
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stainless steel. They compared the results of the developed ANN model with the results of the hyperbolic
sine equation with strain dependent constants and a constitutive equation with simple normalized stress-
normalized strain form. They found the ANN model as the best technique for modeling the available flow
curves [17]. These, together with the other associated published works [17-22] show the ability of ANN
techniques to model the hot deformation flow curves of different materials.

In this study, a radial basis function artificial neural network (RBF-ANN) model is used to predict the
hot deformation flow curves of API X65 pipeline steel. The results of the developed RBF-ANN model are
compared with the results of a new simple phenomenological model that has recently been developed
based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain
power m (m is a constant) [23, 24]. The tested steel is a high strength low-alloy (HSLA) one that is used in

Iran high-pressure gas transportation pipelines [25]. The chemical and mechanical specifications of this
steel are characterized by API standard code [26].

2. Experimental Procedure

2.1. The experimental flow curves

The experimental flow curves of APl X65 pipeline steel, obtained from hot compression tests at different
temperatures and strain rates (as shown in Fig. 1 [25]) were used to develop a radial basis function
artificial neural network (RBF-ANN) model to predict the hot deformation flow curves of tested steel. The
details of the tensile testing equipment and conditions have been reported in Ref. [25]. As can be seen in
most deformation conditions, the flow stress increases to a peak value and then gradually falls to a steady
state stress that is the common pattern of dynamic recrystallization (DRX) occurrence. Though, for the
most severe deformation condition with the temperature of 950 °C and the strain rate of 1 s, true stress—
true strain curve shows a typical dynamic recovery (DRV) behavior [25].
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Fig. 1. Experimental flow curves of APl X65 pipeline steel at different temperatures of (a) 950, (b) 1000, (c) 1050
(d) 1100 and (e) 1150 °C with different strain rates[25].
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2.2.Radial basis function artificial neural network
A RBF-ANN was developed to predict the hot deformation flow curves of APl X65 steel. Also, the results
of the developed RBF-ANN were presented and compared with the results of the newly developed
phenomenological equation published in Ref. [23].

2.2.1. The structure of the radial basis function artificial neural network

An ANN is composed of a large number of highly interconnected processing elements, called neurons,
working together to solve a specific problem [27]. The radial basis function artificial neural networks are
three layer networks usually with a Gaussian transfer function in the hidden layer and a linear transfer
function in the output layer. The structure of the radial basis function artificial neural networkapplied in
this research is depicted in Fig. 2.
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Fig. 2. The structure of the radial basis function artificial neural network, applied in the current work.

As explained elsewhere [28-30], in the RBF_ANNS, the input vectors are fed into the first layer of the
network. The hidden layer is the second layer of RBF_ANNSs that is composed of a set of neurons with
Gaussian transfer function to measure the Euclidean distance between the centers of the hidden layer (u; k

= 1to L) and the input vector (x;; i = 1 to N). Hence, the output of the hidden layer neurons is calculated
from:

_ 2
v (x) = exp (— Jx—pl” ;,%k” ) 1)

where||x — u |l is the Euclidean distance between the kth center of the hidden layer and the input vector of
x and is calculated from |lx — g |l = VX, (x; — 1)?), where oy is the spread of the kth neuron of the
hidden layer and controls the sensitivity of it to the Euclidean distance. The third layer of the RBF_ANNSs
is the output layer. Usually, a linear transfer function is used in this layer that returns the value passed to
it. Thus, the output of a RBF_ANN with a single output variable is equal to the weighted sum of the
outputs of the hidden layer:

Y = Ziema Wievie () 2
where, w, is the connecting weight of the kth neuron of the hidden layer to the output variable of the
network (y).

2.2.2. Data base

The experimental stress-true strain curves obtained at different deformation temperatures and strain rates
[25] were sampled for the different strains in the range of 0.1 to 0.7 with the step size of 0.01. Thus, a data
base with the input variables of the deformation temperature, strain rate, strain and the output variable of
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flow stress with 990 patterns was prepared. The prepared data base was divided into two subsets of
training and testing. Two thirds of the overall data (i.e. 660 randomly selected patterns) was used for
training and the rest was used for testing the generalization property of the developed neural network.

2.2.3. Neural network training and testing

After the construction of the neural network structure, a training algorithm is used to adjust the weights of
the network so as to minimize the network mean square error (MSE) between the measured and predicted
values of the output variable of the network, iteratively [28]:

MSE =~ %1, (t; — y:)? 3)

Where t; and y; are the target (actual) and predicted values of ith pattern of the output variable v,
respectively and nis the number of data patterns used for training the network.

Data normalization is one important way to improve the prediction performance of the neural
networks. Especially, when the ranges of input variables are in different magnitudes, this is a necessary
[31]. In the current study, the input variables were normalized by transformation to a new data set, with a
zero mean and a unit variance (using “mapstd” function of MATLAB platform) [32]. In RBF-ANNS, the
number of neurons in the hidden layer and the spread value are the main factors influence the prediction
performance of the developed network [33]. The number of the neurons in the hidden layer can be simply
considered equal to the number of training patterns. Thus, the error between the predicted and measured
(actual) network outputs for the training subset can be equal to zero; but, the generalization property of the
trained network may be lost. In this work, after some trial and error the number of neurons in the hidden
layer was set to 160. It was found that the higher number of neurons causes not to improve in the
performance of the developed network for training data but lowers the prediction performance of the
trained network for testing (unseen) subset. The RMSE criterion was used to assess the prediction
performance of the developed networks:

RMSE = /%Z?ﬂ(ti —y,)? 4)

Where t; is the target output, y; is the model output and n is the number of overall data patterns.
Furthermore, in the designing process of RBF-ANNES, it is needed to determine a proper spread value ¢ to
control the sensitivity of hidden neurons [29]. In the other words, there is an optimum value for ¢ that after
it, the performance of the developed RBF_ANN for the training data improves but decreases for the
testing data. Here, to find the optimum value of spread (o), different networks with different values of
spread were trained and tested. The obtained results for training and testing patterns are shown in Fig. 3.
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Fig. 3. The results (RMSE values) obtained for training and testing patterns with different values of spread.
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As can be seen, after the spread value of about 0.6 the developed model undergoes an over-fitting (i.e. no
significant improve can be observed for training patterns; while, the RMSE value increases for testing
patterns). As depicted, using the regression analysis, a second order polynomial function was fitted to the
RMSE values obtained at different spreads for the testing data. The derivative of this polynomial function
was set equal to zero to find an optimum spread value. Consequently, an optimized RBF_ANN, with the
spread value of about 0.7 was obtained that was used to predict the hot deformation flow curves of API
X65 pipeline steel.

2.2.4. Results of the developed neural network

The results of the developed RBF-ANN model with the spread value of 0.7 for training, testing and overall
data patterns, in the shape of scatter diagrams, are presented in Fig. 4. As can be seen, there is an excellent
agreement (with correlation coefficient value of R = 0.9999 for overall data) between the predicted and
measured flow stresses. Furthermore, the low RMSE values of 0.31, 0.56, 0.41 MPa that were respectively
obtained for training, testing and the overall data is the other evidence of this excellent agreement.
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Fig. 4. The results of the developed RBF-ANN model with the spread value of 0.7 for training,
testing and overall data patterns.

A comparison between the experimental and predicted flow curves (using the developed RBF-ANN
model) at deformation conditions with two temperatures of 1000 and 1100 °C with different strain rates is
presented in Figs. 5a and 5b, respectively. As can be seen, there is an excellent fit between the RBF-ANN
simulated and experimental flow curves that is the evidence of robustness of the developed RBF-ANN
model.
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Fig. 5. The comparison between the experimental and modeled flow curves (using the RBF-ANN model) at
deformation conditions with two temperatures of (a) 1000 and (b) 1100 °C with different strain rates.
2.3. Comparison of the results of the developed RBF-ANN model with the results of the investigated
phenomenological model

The under studied phenomenological model has been developed previously by the author [23] and was
used to describe the hot deformation flow curves of API X65 pipeline steel. Using the equation developed
based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain
power a constant number the hot flow stress of APl X65 pipeline steel can be expressed as follows [23]:

o = 0169y (%) x (—0.006 + 2.420£%7 — 3.899¢14 + 2.046e21) (5)

More details about finding the constants of this equation can be found in Refs. [23 and 24]. RMSE
criterion was used to evaluate the prediction performances of the developed RBF-ANN model and
investigated phenomenological model. According to the obtained results, it was found that the developed
RBF-ANN model, with the RMSE value of 0.41 MPa, has a better performance than that of the
investigated phenomenological constitutive equation. The obtained RMSE value for the developed RBF-
ANN model was less than one-tenth of the RMSE value of 4.74 MPa [23] obtained for the investigated
constitutive equation.

3. Conclusion

In this work, a RBF-ANN model was developed to predict the hot deformation flow curves of APl X65
pipeline steel. The flow curves obtained from single hit compression testing at different deformation
conditions were sampled. Consequently, a database with the input variables of deformation temperature,
strain rate, strain and the output variable of flow stress was obtained. Accordingly, a RBF-ANN model
was developed to model the hot deformation flow curves of tested steel. The prediction performance of the
developed network was assessed and compared with the results of a recently developed constitutive
equation, through the use of RMSE criterion. It was found that developed RBF-ANN model has better
performance than that of the investigated constitutive equation (lower RMSE). Moreover, it was shown
that using the developed RBF-ANN model, there is an excellent fit between the predicted and
experimental flow curves (with correlation coefficient value of R = 0.9999 for overall data). This, together
with very low RMSE value of 0.41 MPa obtained for overall data showed the robustness of the developed
RBF-ANN model to predict the hot deformation flow curves of the tested steel in the temperature range of
950 to 1150°C and the strains between 0.01 to 1 s™.
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