Anisotropy in Elastic Properties of Porous 316L Stainless Steel Due to the Shape and Regular Cell Distribution

Document Type: Research Paper

Authors

Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran

Abstract

In this study, two-dimensional finite element modeling was used to study the simultaneous effect of the cell shape and regular cell distribution on the anisotropy of the elastic properties of 316L stainless steel foam. In this way, the uniaxial compressive stress-strain curve was predicted using a geometric model and fully solid 316L stainless steel. The results showed that the elastic tangent and the yield strength increase significantly if the direction of the loading is parallel to the major cell dimension. Besides, the regular cell distribution affects the above properties, and the sharp drop in the mechanical properties is observed when the maximum shear stress plane is parallel with the plane including higher cell density. In addition, the finite element modeling showed that the elastic properties of porous 316L stainless steel are anisotropic and the optimum conditions depend entirely on the shape of the cells and the loading direction in the regular cell distribution foam.

Keywords


 [1]  E.A. Basir, K. Narooei, Simulation of Deformation Behavior of Porous Titanium Using Modified Gurson Yield Function, Iran. J. Mater. Form, 3 (2016) 26–38. doi:10.22099/IJMF.2016.3861.
[2]  N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A, 576 (2013) 82–90. doi:10.1016/j.msea.2013.04.009.
[3]   a.-H.H. Benouali, L. Froyen, T. Dillard, S. Forest, F. N’guyen, F. N’Guyen, Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, J. Mater. Sci, 40 (2005) 5801–5811. doi:10.1007/s10853-005-4994-9.
[4]  Y. Mu, G. Yao, H. Luo, Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams, Mater. Des, 31 (2010) 1567–1569. doi:10.1016/j.matdes.2009.09.044.
[5]  Y. Mu, G. Yao, Anisotropic compressive behavior of closed-cell Al-Si alloy foams, Mater. Sci. Eng. A, 527 (2010) 1117–1119. doi:10.1016/j.msea.2009.09.045.
[6]  Y. Mu, G. Yao, H. Luo, Anisotropic damping behavior of closed-cell aluminum foam, Mater. Des, 31 (2010) 610–612. doi:10.1016/j.matdes.2009.06.038.
[7]  A. Manonukul, P. Srikudvien, M. Tange, C. Puncreobutr, Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method, Mater. Sci. Eng. 655 (2016) 388–395. doi:10.1016/j.msea.2016.01.017.
[8]  M. Mirzaei, M.H. Paydar, Compressive behavior of double-layered functionally graded 316L stainless steel foam, Int. J. Mater. Res, 109 (2018) 938–943. doi:10.3139/146.111689.
[9]  M. Mirzaei, M.H. Paydar, A novel process for manufacturing porous 316 L stainless steel with uniform pore distribution, Mater. Des, 121 (2017) 442–449. doi:10.1016/j.matdes.2017.02.069.
[10]     L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, Cambridge university press, 1999.
[11]     A. Elmoutaouakkil, L. Salvo, E. Maire, G. Peix, 2D and 3D Characterization of Metal Foams Using X-ray Tomography, Adv. Eng. Mater, 4 (2002) 803–807. doi:10.1002/1527-2648(20021014)4: 10<803::AID-ADEM803>3.0.CO;2-D.
[12]     K. McCullough, N. Fleck, M. Ashby, Uniaxial stress–strain behaviour of aluminium alloy foams, Acta Mater, 47 (1999) 2323–2330. http://www.sciencedirect.com/science/article/pii/S1359645499001287 (accessed September 7, 2016).
[13]     R.K. Desu, H.N. Krishnamurthy, A. Balu, A.K. Gupta, S.K. Singh, Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures, J. Mater. Res. Technol, 5 (2016) 13–20.
 [14]     I. Standard, INTERNATIONAL STANDARD Mechanical testing of metals - Ductility testing- Compression test for porous and cellular metals, 2011 (2011).
[15]     R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th Edition, Wiley, 2012. https://books.google.com/books?id=8d8bAAAAQBAJ.
[16]     M. Mirzaei, M.H. Paydar, Fabrication and Characterization of Core–Shell Density-Graded 316L Stainless Steel Porous Structure, J. Mater. Eng. Perform, (2018). doi:10.1007/s11665-018-3797-5.
[17]     H. Shen, L.C. Brinson, Finite element modeling of porous titanium, Int. J. Solids Struct, 44 (2007) 320–335. doi:10.1016/j.ijsolstr.2006.04.020.
[18]     M. Alizadeh, M. Mirzaei-Aliabadi, Compressive properties and energy absorption behavior of Al–Al2O3 composite foam synthesized by space-holder technique, Mater. Des, 35 (2012) 419–424. doi:10.1016/j. matdes. 2011.09.059.
[19]     B. Jiang, N. Zhao, C. Shi, J. Li, Processing of open cell aluminum foams with tailored porous morphology, Scr. Mater, 53 (2005) 781–785. doi:10.1016/j.scriptamat.2005.04.055.