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In this paper, the effects of the addition of Al, Zn and Mn along with the application of the hot
extrusion process on the microstructural refinement and enhancement of the mechanical
properties of magnesium alloy have been studied. Based on Mg-2Al alloy, it was found that the
addition of 0.5 wt% Zn to form Mg-2AI-0.5Zn alloy or 0.5 wt% Mn to form Mg-2Al-0.5Mn
alloy is the effective way for grain refinement of a-Mg in the as-cast state. Moreover, further
remarkable refinement of the grain size can be achieved by the extrusion process in such a way
that the average grain size of the extruded Mg-2Al-0.5Mn alloy was determined to be 1/165 that
of the as-cast Mg. The obtained refined alloys showed significant enhancement of the yield stress
and tensile strength, where the former was successfully related to the average grain size by the
Hall-Petch relationship with the slope of ~ 309 MPa/um®5, The use of the grain refinement
process showed that at first the yield ratio did not change considerably, while the tensile strength,
the work-hardening exponent, and the uniform elongation increased. However, after a transition
grain size (~ 32 um), the yield ratio increased sharply due to the large increase in the yield stress,
and hence it was not possible to further enhance the uniform elongation using the grain
refinement despite obtaining higher yield and tensile strengths.
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1. Introduction

The low strength and poor ductility of Mg alloys
have effectively negated their desirable attributes for
automotive, aerospace, and medical applications [1-
3]. The response of the scientific community and
related industries has been the development of special
alloys and application of various processing routes.

Alloying elements such as Al, Zn, and Mn have
been extensively used in this respect. Among the
developed alloys, AZ (Mg-Al-Zn) and AM (Mg-Al-
Mn) alloys, i.e. Mg-Al alloys with the addition of Zn
and Mn below 1 wt%, are among the most widely used
ones. In fact, Al, Zn, and Mn are effective grain
refiners of a-Mg in the as-cast condition, where the
grain refinement is known as one of the most effective
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means for improving the strength and ductility of the
as-cast Mg alloys [4-6].

The famous Hall-Petch relationship of 0 = G +
k/VD can be used to relate the yield stress () to the
grain size (D) through the Hall-Petch slope (k). Yu
etal [7] have recently summarized the Hall-Petch data
for Mg alloy by considering the effects of the texture,
temperature and stain, and grain size range on k. A
compilation of Hall-Petch data for Mg alloys has been
shown in Table 1, which reveals that the grain size
range has some effects on the values of k [7].

Table 1: Hall-Petch slope for different Mg alloys [7].

Pure Mg- Mg-

Alloy Mg AZ31 AZ31 AZ31 AZ61 AZ91 17n 1Y
Rangeof D 11— 10- 11—
(um) 140 25-8 3-23 13-140 8-150 1-100 218 190

k (MPa/um®®) 294 304 291 281 344 244 273 252
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Severe plastic deformation (SPD) techniques have
gained significant attention due to their remarkable grain
refinement and possibility of attaining superplastic
forming capability [8-13]. However, among the various
processing routes, the hot extrusion is the simplest one,
which can induce intense grain refinement toward
favorable effects on the mechanical properties of Mg
alloys [14-16].

The studied AZ and AM alloys usually have high Al
contents. While Al is one of the best strengthening
elements in Mg alloys, its addition at high levels is
unfavorable in many applications [17-19]. In other words,
if the good mechanical properties are satisfied, Mg alloys
with Al < 3 wt% might find wider applications. The
present work aims to deal with this subject by adding
small amounts of Zn and Mn (~ 0.5 wt%) and applying
the hot extrusion process to induce grain refinement.

2. Experimental Details

Weight percentages being considered, molten Mg,
Mg-2Al, Mg-2Al-0.5Zn (AZ20), and Mg-2Al-0.5Mn
(AM20) were prepared in an electric furnace and poured
from 750 °C in a metallic mold. The as-cast ingots were
subjected to the homogenization treatment (400 °C for 20 h)
followed by the extrusion (385 °C with ratio of 12:1).
Optical and scanning electron microscopes and X-ray
diffraction (XRD) were used for microstructural and
phase analyses, respectively. Finally, the tensile testing
(crosshead speed of 1 mm/min at room temperature) was
applied to the subsize ASTM E8-04 round samples with a
gauge length and diameter of 16 mm and 4 mm,
respectively. The reproducibility of the results was also
verified by the repetition of some tests. While the error
bars were not included for the sake of brevity, it is
declared that the standard deviation of the grain size and
yield/tensile strength measurements were below 9.5 um
and 8 MPa, respectively.

3. Results and Discussion

3.1. Microstructures

Representative micrographs of the as-cast alloys are
shown in (Fig. 1). While large a-Mg grains (~ 528 um)
can be seen for pure Mg (Fig. 1a), the addition of 2 wt%
Al has resulted in a remarkable grain refinement (~ 106
um) based on the known growth restriction effect of Al
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(Fig. 1b) [20]. Similarly, the addition of 0.5 wt% Zn
(Fig. 1c) or 0.5 wt% Mn (Fig. 1d) to Mg-2Al to form
Mg-2Al-0.5Zn and Mg-2Al-0.5Mn alloys can contribute
to further grain refinement, where the average grain sizes
of 56 um and 32 um were determined for Mg-2Al-0.5Zn
and Mg-2AIl-0.5Mn alloys, respectively. The arrows
shown on the micrograph of Mg-2Al-0.5Mn alloy (Fig.
1d) point to a second phase, which can be better
identified in the corresponding SEM image (Fig. 1e).
This phase was characterized as AlgMns intermetallic
based on the XRD patterns shown in (Fig. 2). The latter
fig also reveals that the other alloys just have the a-Mg
matrix, which can be also verified based on their
microstructures (Fig. 1).
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Fig. 1. Microstructures of the as-cast alloys.
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Fig. 2. XRD patterns of the as-cast alloys.
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Representative extruded microstructures are shown
in (Fig. 3). For all alloys, an intense grain refinement can
be seen compared with the as-cast counterparts (Fig. 1),
which is related to the recrystallization processes
induced by hot extrusion. For instance, the finest grain
size has been achieved for the extruded Mg-2Al-0.5Mn
alloy with the average grain size of 3.2 um
corresponding to the ratio of Das-cast/Dextruded = 10.

Mg-2Al-0.5Mn

Fig. 3. Representative microstructures of the extruded alloys.

3.2. Tensile properties

A summary of the tensile properties based on the
tensile tests is shown in Fig. 4. It can be seen that,
generally, by using the grain refinement (Fig. 4a), the
yield stress (Y'S, Fig. 4b) and the tensile strength (UTS,
Fig. 4c) increase. For instance, among the extruded
alloys, Mg-2AI-0.5Mn alloy with the finest grain size
shows the highest yield stress (205 MPa) and tensile
strength (283 MPa). Compared with the as-cast Mg
(yield stress of 38 MPa and tensile strength of 92 MPa),
these values show ~ 440 % and 207 % enhancement,
respectively. This reveals that by proper alloying and
with the aid of hot extrusion process, it is possible to
enhance the mechanical strength of Mg alloys
significantly.
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Extruded Mg-2A-05Mn [ ]
Extruded Mg-2Al05Zn [ |
Extruded Mg2Al [ ]
ExtrudedMg [ ]

As-Cast Mg-2AI-0.5Mn |
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Fig. 4. Summary of the tensile properties of the alloys
Mg-2Al-0.5Zn studied in this work.
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Fig. 4. Continue

The effect of the grain size can be quantitatively
shown based on the Hall-Petch plot (Fig. 5), where it
can be seen that all data can be represented by a linear
line with a slope of ~ 309 MPa/um®5, This indicates
that the grain size is the main variable to control the
mechanical properties of these essentially single-
phase alloys. However, the solid solution
strengthening and particle hardening effects due to the
presence of Zn and Mn can be responsible for the
significant scatter in the H-P plot. The Hall-Petch
slope of 309 MPa/um®s is consistent with the results
reported for pure Mg (294 MPa/pum®S for the grain
size range of 11-140 pum [21]), and the nearly similar
AZ31 alloy (304 MPa/um®%[22], 291 MPa/um®*[23],
and 281 MPa/um0®*® [24] for the grain size ranges of

2.5-8 um, 3-23 um, and 13-140 pum), respectively.
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Fig. 5. Hall-Petch plot applied to the yield stress of the
alloys studied in this work.

3.3. Work-hardening behavior

The yield ratio (YS/UTS) is a good indication of the
work-hardening capability of the engineering alloys [25,
26], where reduction in its value is an indication of a
better work-hardening capacity. The yield ratio of the
present alloys versus the grain size is shown in Fig. 6a.
It can be seen that refining the grain size can change the
yield ratio in such a way that two trends can be
identified: firstly, by grain refinement, the yield ratio
does not change considerably, and second, it increases
sharply by further grain refinement. By curve fitting on
the parts of the graph corresponding to these two regions,
the transition grain size separating these two trends was
determined as 31.75 pum.

The work-hardening curves corresponding to different
grain sizes are shown in Fig. 6b: Coarsest (As-Cast Mg),
transition (~ As-cast Mg-2Al-0.5Mn with an average
grain size of 32 um), and finest (Extruded Mg-2Al-
0.5Mn). Based on the Considere's criterion [27], the
plastic instability occurs when the strain-hardening rate
coincides with the flow stress. Moreover, by considering
the Hollomon equation [27], the value of true strain at
the coincidence point determines the work-hardening
exponent (n-value). Based on Fig. 6b, the n-value
increases up to the transition grain size, and then, it does
not change considerably. In fact, the work-hardening
curves of the as-cast and extruded Mg-2AI-0.5Mn alloys
are similar except for the level of the flow stress that is
higher for the extruded condition.
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Fig. 6. Analyzing the work-hardening behavior.

Therefore, the work-hardening exponent does
not reduce by grain refinement beyond the
transition grain size (Fig. 6b). If the value of true
strain at the coincidence point is expressed as
engineering strain, the obtained value determines
the uniform elongation. Therefore, by employing
the grain refinement process toward the transition
grain size, the uniform elongation as well as the
tensile strength enhances whereas at lower grain
sizes, due to the increased yield ratio (related to the
sharp increase in the vyield stress) and the
consequent leftward shift of the coincidence point
(Considere's criterion), it is not possible to further
enhance the uniform elongation.
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4. Conclusion

In this study, the effects of the addition of Al, Zn
and Mn along with the application of the hot
extrusion process on the microstructural refinement
and enhancement of the mechanical properties of
magnesium alloy have been examined. The
following conclusions can be drawn from this study:

(1) Based on Mg-2Al alloy, it was found that the
addition of 0.5 wt% Zn to form Mg-2Al-0.5Zn alloy
or 0.5 wt% Mn to form Mg-2Al-0.5Mn alloy is the
effective way for the grain refinement of a-Mg in the
as-cast state. For instance, the average grain size of
the as-cast Mg-2Al-0.5Mn alloy was determined to
be 1/16.5 that of the as-cast Mg. Moreover, further
remarkable refinement of the grain size can be
achieved by the extrusion process in such a way that
the average grain size of the extruded Mg-2Al-
0.5Mn alloy was determined to be 1/10 that of its as-
cast counterpart.

(2) The obtained refined alloys showed significant
enhancement of the yield stress and tensile strength.
For instance, the extruded Mg-2AlI-0.5Mn alloy with
the finest grain size shows the highest yield stress
(205 MPa) and tensile strength (283 MPa).
Compared with the as-cast Mg (yield stress of 38
MPa and tensile strength of 92 MPa), these values
show ~ 440 % and 207 % enhancement, respectively.
The yield stress was also successfully related to the
average grain size by the Hall-Petch relationship
with a slope of ~ 309 MPa/um°®5.

(3) By using the grain refinement, firstly the yield
ratio did not change considerably, while the tensile
strength, the work-hardening exponent, and the
uniform elongation increased. However, after a
transition grain size (~ 32 um), the yield ratio
increased sharply due to the large increase in the
yield stress, and hence it was not possible to further
enhance the uniform elongation using the grain
refinement despite obtaining higher yield and tensile
strengths.
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