[1] S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, Friction-stir welding of ultrafine grained austenitic 304L stainless steel produced by martensitic thermomechanical processing, Materials and Design 76 (2015) 130-140.
[2] X. H. Chen, J. Lu, L. Lu, and K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Materialia 52 (2005) 1039-1044.
[3] M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, G. I. Raab, R. Z. Valiev, Superior strength of austenitic steel produced by combined processing, including equal-channel angular pressing and rolling, Metals 6 (2016) 310.
[4] H. Mirzadeh, J. M. Cabrera, A. Najafizadeh, P. R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Materials Science and Engineering: A 538 (2012) 236-245.
[5] S. Mandal, A. K. Bhaduri, V. S. Sarma, A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel, Metallurgical and Materials Transactions A 42 (2011) 1062-1072.
[6] M. B. R. Silva, J. Gallego, J. M. Cabrera, O. Balancin, A. M. Jorge Jr, Interaction between recrystallization and strain-induced precipitation in a high Nb-and N-bearing austenitic stainless steel: Influence of the interpass time, Materials Science and Engineering: A 637 (2015) 189-200.
[7] S. Kheiri, H. Mirzadeh, M. Naghizadeh, Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing, Materials Science and Engineering: A 759 (2019) 90-96.
[8] A. Amininejad, R. Jamaati, S. J. Hosseinipour, Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling, Materials Science and Engineering: A 767 (2019) 138433.
[9] G. Sun, L. Du, J. Hu, B. Zhang, R. D. K. Misra, On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel, Materials Science and Engineering: A 746 (2019) 341-355.
[10] M. J. Sohrabi, H. Mirzadeh, C. Dehghanian, Thermodynamics basis of saturation of martensite content during reversion annealing of cold rolled metastable austenitic steel, Vacuum 174 (2020) 109220.
[11] A. Järvenpää, M. Jaskari, A. Kisko, P. Karjalainen, Processing and Properties of Reversion-Treated Austenitic Stainless Steels, Metals 10 (2020) 281.
[12] S. Sadeghpour, A. Kermanpur, A. Najafizadeh, Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment, Materials Science and Engineering: A 584 (2013) 177-183.
[13] M. Naghizadeh, H. Mirzadeh, Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel, Metallurgical and Materials Transactions A 49 (2018) 2248-2256.
[14] C. Herrera, R. L. Plaut , A. F. Padilha, Microstructural Refinement during Annealing of Plastically Deformed Austenitic Stainless Steels, Materials Science Forum 550 (2007) 423-428.
[15] M. Odnobokova, A. Belyakov, A. Kipelova, R. Kaibyshev, Formation of ultrafine-grained structures in 304L and 316L stainless steels by recrystallization and reverse phase transformation, Materials Science Forum 838-839 (2016) 410-415.
[16] M. Hadji, R. Badji, Microstructure and mechanical properties of austenitic stainless steels after cold rolling, Journal of Materials Engineering and Performance 11 (2002) 145-151.
[17] V. Shrinivas, S. K. Varma, L. E. Murr, Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling, Metallurgical and Materials Transactions A 26 (1995) 661-671.
[18] A. A. Popoff, Simplified hot rolling load calculations incorporating material strain rates, International Journal of Mechanical Sciences 18 (1976) 529-532.
[19] A. Etienne, B. Radiguet, C. Genevois, J.M. Le Breton, R. Valiev, P. Pareige, Thermal stability of ultrafine-grained austenitic stainless steels, Materials Science and Engineering: A 527 (2010) 5805-5810.
[20] G. L. Huang, D. K. Matlock, G. Krauss, Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet, Metallurgical Transactions A 20 (1989) 1239-1246.
[21] K. Nohara, Y. Ono, N. Ohashi, Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels, Tetsu-to-Hagané 63 (1977) 772-782.
[22] Y. C. Lin, M. S. Chen, Study of microstructural evolution during static recrystallization in a low alloy steel, Journal of Materials Science 44 (2009) 835-842.
[23] W. Qin, J. Li, Y. Liu, J. Kang, L. Zhu, D. Shu, P. Peng, D. She, D. Meng, Y. Li, Effects of grain size on tensile property and fracture morphology of 316L stainless steel, Materials Letters 254 (2019) 116-119.
[24] Y. Mazaheri, F. Karimzadeh, M.H. Enayati, A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing, Journal of Materials Processing Technology 211 (2011) 1614-1619.
[25] M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Second Edition, Cambridge University Press, 2009.