Investigating and Optimizing the Effect of Primary Parameters on the Amount of Wear in AISI 631 Sheet

Document Type : Research Paper

Authors

1 Faculty of Mechanics, Malek Ashtar University of Technology, Iran

2 Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

Metal friction is a critical phenomenon that affects the performance and longevity of metal components. Understanding the factors that contribute to metal friction and finding effective ways to optimize its results are essential in various industries. To investigate metal friction and optimize results, an experimental design approach is employed. This approach involves systematically varying input parameters to assess their impact on frictional forces. By carefully controlling and manipulating these parameters, researchers can gain insights into the underlying mechanisms and identify strategies to minimize friction. In the test design method, by using the response surface method, a series of tests consisting of primary parameters are designed, and their results are checked and optimized on the amount of friction. This study focuses on investigating the effects of weight, length of the path, and the speed of the pin on wear using a wear-testing device. The results of the optimization process indicate that the optimal condition occurs when the weight is at its minimum value of 318.2 kg, the speed is at its minimum value of 0.9546 m/s and the path length is 2356.7 m. The results indicate an increase in wear with an increase in weight and length of the path. Additionally, Finite element simulation was done to check the results. The results of experimental operation and finite element simulation showed a good agreement.

Keywords


[1]   Stachowiak, G., & Batchelor, A. W. (2013). Engineering tribology. Butterworth-heinemann.
[2]   Bayer, R. J. (2004). Mechanical Wear Fundamentals and Testing, revised and expanded. CRC Press.
[3]   Sun, Y., Ahlatci, H., Ozdogru, E., & Cimenoglu, H. (2006). Dry sliding wear behaviour of Fe–0.4C–25Cr–XNi cast steels. Wear261(3-4), 338-346. https://doi.org/10.1016/j.wear.2005.11.005
[4]   Mandal, A., Chakraborty, M., & Murty, B. S. (2007). Effect of TiB2 particles on sliding wear behaviour of Al–4Cu alloy. Wear262(1-2), 160-166. https://doi.org/10.1016/j.wear.2006.04.003
[5]   Cueva, G., Sinatora, A., Guesser, W. L., & Tschiptschin, A. P. (2003). Wear resistance of cast irons used in brake disc rotors. Wear255(7-12), 1256-1260. https://doi.org/10.1016/S0043-1648(03)00146-7
[6]   Yang, L. J. (1999). Pin-on-disc wear testing of tungsten carbide with a new moving pin technique. Wear225, 557-562. https://doi.org/10.1016/S0043-1648(98)00380-9
[7]   Mosbah, A. Y., Wexler, D., & Calka, A. (2005). Abrasive wear of WC–FeAl composites. Wear258(9), 1337-1341. https://doi.org/10.1016/j.wear.2004.09.061
[8]   Whiting, M. J. (2005). An investigation of improving wear of 390 die-cast aluminum through hardcoat anodizing. [Master's Thesis, Brigham Young University]. http://hdl.lib.byu.edu/1877/etd1006
[9]   Wiche, S. J., Keys, S., & Roberts, A. W. (2005). Abrasion wear tester for bulk solids handling applications. Wear258(1-4), 251-257. https://doi.org/10.1016/j.wear.2004.09.014
[10] Kennedy, D. M., & Hashmi, M. S. J. (1998). Methods of wear testing for advanced surface coatings and bulk materials. Journal of Materials Processing Technology77(1-3), 246-253. https://doi.org/10.1016/S0924-0136(97)00424-X
[11] Jeong, D. H., Gonzalez, F., Palumbo, G., Aust, K. T., & Erb, U. (2001). The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scripta Materialia44(3), 493-499. https://doi.org/10.1016/S13596462(00)00625-4
[12] Kumar, K. K., & Choudhury, S. K. (2008). Investigation of tool wear and cutting force in cryogenic machining using design of experiments. Journal of materials processing technology203(1-3), 95-101. https://doi.org/10.1016/j.jmatprotec.2007.10.036
[13] Gupta, M. K., Singh, G., & Sood, P. K. (2015). Experimental investigation of machining AISI 1040 medium carbon steel under cryogenic machining: a comparison with dry machining. Journal of The Institution of Engineers (India): Series C96, 373-379. https://doi.org/10.1007/s40032-015-0178-9
[14] Ringey D. A., & Glaeser W. A., Wear Resistance, Metals Handbook, ASM, Ed. 9, 1, 579-638.
[15] Shorowordi, K. M., Haseeb, A. S. M. A., & Celis, J. P. (2006). Tribo-surface characteristics of Al–B4C and Al–SiC composites worn under different contact pressures. Wear261(5-6), 634-641. https://doi.org/10.1016/j.wear.2006.01.023
[16] Daoud, A., & Abou El-khair, M. T. (2010). Wear and friction behavior of sand cast brake rotor made of A359-20 vol% SiC particle composites sliding against automobile friction material. Tribology International43(3), 544-553. https://doi.org/10.1016/j.triboint.2009.09.003
[17] Singla, M., Singh, L., & Chawla, V. (2009). Study of wear properties of Al-SiC composites. Journal of Minerals & Materials Characterization & Engineering8(10), 813-819. https://doi.org/10.4236/jmmce.2009.810070
[18] Kök, M. (2006). Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites Part A: Applied Science and Manufacturing37(3), 457-464. https://doi.org/10.1016/j.compositesa.2005.05.038
[19] Straffelini, G., Pellizzari, M., & Molinari, A. (2004). Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material. Wear256(7-8), 754-763. https://doi.org/10.1016/S00431648(03)00529-5
[20] Finnie, I. (1960). Erosion of surfaces by solid particles. wear3(2), 87-103. https://doi.org/10.1016/00431648(60)90055-7
[21] Telliskivi, T., & Olofsson, U. (2004). Wheel–rail wear simulation. Wear257(11), 1145-1153. https://doi.org/10.1016/j.wear.2004.07.017
[22] Diana, G., Bruni, S., & Braghin, F. (2005). Wheel-Rail Contact: Wear Effects on Vehicle Dynamic Behaviour.
[23] Ginzburg, V. B. (1989). Steel-rolling technology: theory and practice. CRC Press.
[24] Masen, M. A. (2004). Abrasive tool wear in metal forming processes. [PhD Thesis-Research UT, graduation UT, University of Twente]. https://www.persistent-identifier.nl/urn:nbn:nl:ui:28-41722
[25] Wahlström, J., Söderberg, A., Olander, L., Jansson, A., & Olofsson, U. (2010). A pin-on-disc simulation of airborne wear particles from disc brakes. Wear268(5-6), 763-769. https://doi.org/10.1016/j.wear.2009.11.014
[26] Hegadekatte, V., Huber, N., & Kraft, O. (2006). Modeling and simulation of wear in a pin on disc tribometer. International joint tribology conference, 42592, 567-575. https://doi.org/10.1115/IJTC2006-12063
[27] Ardila, M. A. N., Costa, H. L., & De Mello, J. D. B. (2020). Influence of the ball material on friction and wear in microabrasion tests. Wear450, 203266. https://doi.org/10.1016/j.wear.2020.203266
[28] Shisode, M., Hazrati, J., Mishra, T., de Rooij, M., ten Horn, C., van Beeck, J., & van den Boogaard, T. (2021). Modeling boundary friction of coated sheets in sheet metal forming. Tribology International153, 106554. https://doi.org/10.1016/j.triboint.2020.106554
[29] Liang, X., Liu, Z., Wang, B., Wang, C., & Cheung, C. F. (2022). Friction behaviors in the metal cutting process: state of the art and future perspectives. International Journal of Extreme Manufacturing5(1), 012002. https://doi.org/10.1088/2631-7990/ac9e27