[2] Hamed, E., Novitskaya, E., Li, J., Chen, P. Y., Jasiuk, I., & McKittrick, J. (2012). Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomaterialia, 8(3), 1080-1092.
https://doi.org/10.1016/j.actbio.2011.11.010
[3] Orías, A. A. E. (2005). The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure [Doctoral dissertation, University of Notre Dame].
https://doi.org/10.7274/9k41zc79t6t
[4] Pithioux, M., Lasaygues, P., & Chabrand, P. (2002). An alternative ultrasonic method for measuring the elastic properties of cortical bone. Journal of Biomechanics, 35 (7), 961-968.
https://doi.org/10.1016/S00219290(02)00027-1
[6] Mercer, C., He, M., Wang, R., & Evans, A. (2006). Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomaterialia, 2(1), 59-68.
https://doi.org/10.1016/j.actbio.2005.08.004
[7] Chen, P. Y., & McKittrick, J. (2011). Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 961-973.
https://doi.org/10.1016/j.jmbbm.2011.02.006
[8] Chen, P. Y., Stokes, A., & McKittrick, J. J. A. B. (2009). Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomaterialia, 5(2), 693-706.
https://doi.org/10.1016/j.actbio.2008.09.011
[9] Alam, K., Mitrofanov, A. V., Bäker, M., & Silberschmidt, V. V. (2009, August). Stresses in ultrasonically assisted bone cutting. In Journal of Physics: Conference Series (Vol. 181, No. 1, p. 012014). IOP Publishing.
https://doi.org/10.1088/1742-6596/181/1/012014
[14] Gibson, L., & Ashby, M. (1997). Cellular solids: structure and properties. Cambridge University Press.
[15] Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 17(4), 389-407.
https://doi.org/10.1007/BF00036191
[17] Benallal, A. (2017). Constitutive equations for porous solids with matrix behaviour dependent on the second and third stress invariants. International Journal of Impact Engineering, 108, 47-62.
https://doi.org/10.1016/j.ijimpeng.2017.05.004
[19] Dæhli, L. E. B., Hopperstad, O. S., & Benallal, A. (2019). Effective behaviour of porous ductile solids with a non-quadratic isotropic matrix yield surface. Journal of the Mechanics and Physics of Solids, 130, 56-81.
https://doi.org/10.1016/j.jmps.2019.05.014
[20] Huang, S., Li, Z., Chen, Z., Chen, Q., & Pugno, N. (2013). Study on the elastic–plastic behavior of a porous hierarchical bioscaffold used for bone regeneration. Materials Letters, 112, 43-46.
https://doi.org/10.1016/j.matlet.2013.08.114
[21] Kelly, N., & McGarry, J. P. (2012). Experimental and numerical characterization of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Journal of the Mechanical Behavior of Biomedical Materials, 9, 184-97.
https://doi.org/10.1016/j.jmbbm.2011.11.013
[22] Cazacu, O., & Revil-Baudard, B. (2015). New three-dimensional plastic potentials for porous solids with a von Mises matrix. Comptes Rendus Mécanique, 343(2), 77-94.
https://doi.org/10.1016/j.crme.2014.12.001
[23] Willam, K. J., & Warnke, E. (1975). Constitutive model for the triaxial behaviour of concrete. International Association for Bridge and Structural Engineering Proceedings, 19, 1-30.
https://sid.ir/paper/600004/en
[24] Ansari Basir, E., & Narooei, K. (2016). Simulation of deformation behavior of porous titanium using modified Gurson yield function. Iranian Journal of Materials Forming, 3(2), 26-38.
https://doi.org/10.22099/ijmf.2016.3861
[26] Milone, A., Foti, P., Berto, F., & Landolfo, R. (2024). Post-necking and damage modelling of steel structural components: A comprehensive state of the art. Engineering Structures, 321, 118931.
https://doi.org/10.1016/j.engstruct.2024.118931
[27] Liu, J., Li, X., Wang, C., Xu, Y., & Xia, K. (2024). A three-dimensional elastoplastic constitutive model incorporating Lode angle dependence. Geomechanics for Energy and the Environment, 38, 100567.
https://doi.org/10.1016/j.gete.2024.100567