
   
     

Published by Shiraz University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).                

Iranian Journal of Materials Forming 11 (2) (2024) 62-74 
 

IJMF 

   

Online ISSN: 2383-0042 

Iranian Journal of Materials Forming 
 

Journal Homepage: http://ijmf.shirazu.ac.ir  
 

  

Research Article  

 

Modeling the Plastic Deformation of Dense and Porous Biomaterials Using 
Modified Yield Criteria by Lode Angle 
 
K. Narooei*  
 
Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 

Received 30 July 2024 
Reviewed 7 September 2024 
Revised 20 September 2024 
Accepted 23 September 2024 

 
 
 

In this research, the von Mises and Gurson models were modified by incorporating the Lode 

angle and void volume fraction to predict the mechanical behavior of materials with non-

uniform geometry or porous (cellular) structures, where the stress state affects yield behavior. 

The yield functions were enhanced multiplying them by a function of the Lode angle, and 

the Voce model was employed to account for the hardening or softening of various materials. 

The material parameters of the Voce model were determined by fitting the experimental data 

for steel, elk antler, polyurethane foam, and bioscaffold. To improve alignment with 

experimental data, the void volume fraction was treated as a function of the trace of the plastic 

strain tensor. It was observed that by varying the Lode function parameters, different shapes 

for the yield surface were achieved, allowing for the selection of tailored yield function for 

specific materials. Results of finite element (FE) constitutive modeling showed that by 

selecting an appropriate yield function and determining suitable values for the Lode angle 

function parameters, the modified yield function can accurately predict the mechanical 

behavior of various materials. It was observed that the barreling of porous compressed 

materials depends on the porosity and friction. 
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1. Introduction 
 

Understanding the mechanical behavior of hard tissues, 

such as bones, antlers, and trabeculae is essential for 

preventing tissue damage and developing effective 

treatments. Extensive experimental research has focused 

on characterizing the mechanical properties and 

behaviors of these biological tissues and their 
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biomaterial analogs. Such investigations are critical not 

only for elucidating the fundamental biomechanical 

principles that govern these structures but also for 

advancing biomedical applications, including the design 

of implants, prosthetics, and tissue engineering 

scaffolds.   

To explore the intricate relationship between the 
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mechanical properties and functional performance of 

cellular hard tissues like bone and scaffolds, the elastic 

deformation region was initially studied. The 

relationship between the complex hierarchical structure 

of bone and its mechanical properties has revealed that 

the rule of mixtures is insufficient for predicting the 

mechanical behavior of bone [1]. The hierarchical 

structure of bone, composed of collagen and non-

collagenous proteins, hydroxyapatite minerals, and 

porosity, contributes to its unique mechanical 

characteristics. The Mori-Tanaka method has effectively 

predicted the elastic moduli of cortical bone, 

demonstrating its capability in accounting for the 

composite nature of bone in the elastic region [2]. The 

constants of the elastic stiffness tensor were determined 

by using ultrasonic waves in three orthogonal directions 

and the bone microstructure were used to determine the 

anisotropic axes [3]. By application of ultrasonic waves 

at various points, the heterogeneity of porous structures 

can be taken into account [4]. The difference in wave 

velocity between the longitudinal and radial directions 

allows for  the determination of the longitudinal elastic 

modulus, ranging from 20 to 25 GPa, and the radial 

elastic modulus, ranging from 14 to 21 GPa [5].  

 As the load-bearing capacity and damage of porous 

materials significantly depend on plastic deformation, 

many studies have focused on the inelastic deformation 

of these materials. To investigate the plastic deformation 

of porous materials, both tension and compression tests 

should be considered simultaneously in the yield criteria 

of these materials [6]. Deproteinized and demineralized 

bones have been used to investigate the deformation 

behavior of the mineral and protein phases that comprise 

the bone constituents [7]. Deformation of the 

demineralized bovine femur and antler samples showed 

plastic deformation, while the deproteinized part 

exhibited a brittle state. Three-point bending tests in both 

dry and rehydrated conditions and compression tests 

were performed on elk antler, and a significant failure 

strain (about 80 %) was observed [8].  

Recently, researchers have focused on numerical 

studies on biological and biomaterials to overcome the 

limitations of experimental tests. The Johnson-Cook 

hardening model has been used to account for hardening, 

strain rate, and temperature effects on material behavior, 

but a plasticity model incorporating the hierarchical 

structure of bone has not been considered [9]. Although 

bone exhibits significant plastic deformation, especially 

under compressive stress, elastic deformation is 

sometimes used to model bone fracture through linear 

elastic fracture mechanics (LEFM) [10]. It is worth 

mentioning that without appropriate plasticity models 

that account for bone structure and the porosity volume 

fraction, stress distribution cannot be accurately 

predicted. Moreover, considering plastic deformation 

challenges the assumptions of linear elastic fracture 

mechanics (LEFM) that were used in some research 

[11].  

The microstructure of biological tissues and 

biomaterials always contains porosity, even in untreated 

cases. This porosity can be prominently observed in 

demineralized or deproteinized structures [7]. Many 

researchers investigated the effects of porosity on the 

mechanical properties and the plastic deformation of 

porous materials. The impact of porosity and pore shape 

on the elastic properties of porous ceramics, investigated 

using micromechanics and finite element methods, 

showed that the elastic modulus and Poisson's ratio 

decrease with increasing volume fraction of porosities 

[12]. Implants made from porous titanium can replace 

biological hard tissues due to their excellent corrosion 

resistance, high strength, and low density. Stress 

shielding can also be avoided by controlling the volume 

fraction of porosities [13, 14]. The Gurson model is 

extensively employed as the yield criterion for porous 

materials due to its incorporation of porosity as a critical 

parameter [15]. Tvergaard and Needleman further 

modified the Gurson model to achieve better correlation 

with experimental studies by incorporating the effects of 

void nucleation and propagation [16]. The non-slip 

deformation mode, non-quadratic yield surface, strain 

localization, and fracture of materials (particularly 

porous materials) necessitate the inclusion of the Lode 

angle in the yield surface function. It has been observed 

that for zero hydrostatic stress, the shape of the yield loci 

of porous materials is identical to that of solid materials, 
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except that the size is reduced by a factor of 1 െ 𝑓, where 

𝑓 represents the void volume fraction. However, in non-

zero hydrostatic stress, the Lode angle parameter should 

be considered to predict more accurate results [17].  

The 𝐽ଶ flow theory (von Mises yield surface) was 

utilized to obtain numerical results for the deformation 

of the voided unit cell. The Gurson yield function, 

influenced by the Lode angle, was then employed to 

achieve similar results without considering the porosities 

in the geometry of the unit cell [18]. Utilizing the 

Hershey-Hosford yield criterion to account for the 

plastic deformation of the porous material matrix 

demonstrated that the yield loci on the deviatoric plane 

show a transition from a hexagon to a rounded triangle 

or the circular shape described by the Gurson criterion, 

depending on the stress triaxiality [19]. Some 

researchers have considered the mechanical behavior of 

porous materials by assuming the porosity geometry or 

its effect by considering the pressure dependency of 

materials, while the effect of stress state has not been 

fully addressed [20-22]. However, it was shown that the 

Lode angle significantly contributes to the mechanical 

behavior as this parameter is sensitive to the stress state 

[23]. The Gurson model, while it considers the void 

volume fraction [24], should be enhanced with a 

function of the third invariant of stress tensor (Lode 

angle) to consider the effect of the stress state [25]. It has 

been shown that stress triaxiality (stress state) has a 

significant role in the necking and post-necking yield 

behavior [26]. Investigation into the plastic deformation 

of cement stone has shown that the Lode angle should be 

considered in the plastic yield function to control the 

deviatoric plane's shape and capture strain in the 

direction of intermediate principal strain [27].  

Regarding previous studies, it can be concluded that 

porosity is not the only factor affecting the mechanical 

behavior of porous materials, and the stress state should 

be taken into account by considering the Lode angle [8]. 

In the current research, the Gurson yield function has 

been generalized to include a function of the Lode angle 

to account for the stress state in plastic deformation. This 

modified yield function has been used to predict the 

plastic deformation of non-uniform samples made from 

steel, untreated elk antler (UEA), cellular polyurethane 

foam (CPF), and porous hierarchical bioscaffold (PHB). 

According to the results, it is possible to characterize the 

mechanical behavior of solid to porous materials under 

different types in tension and compression loading. The 

manuscript is organized as follows: The first part 

outlines the theoretical framework of the research. The 

second part illustrates the yield surface resulting from 

the proposed modification of the yield function. In the 

final part, the results of finite element constitutive 

modeling are discussed and compared with experimental 

results.  

 

2. Porous Plasticity Models 

 

Many experimental studies have investigated the plastic 

behavior of biomaterials such as bioscaffolds and 

polyurethane foams. However, some researchers have 

considered the simulation of the plastic deformation of 

these materials [20, 21]. The modified Gurson model has 

been widely used to predict the plastic deformation of 

porous materials under mechanical loading. As 

experimental reports disproved the volume-preserving 

assumption of porous biological materials during plastic 

deformation [8, 21], the modified Gurson model has 

been used to determine the yield surface as follows [15, 

16]:   

 

𝜙 ൌ ሺ
𝜎௘௤௏ெ

𝜎ெ
ሻଶ ൅ 2𝑓𝑞ଵ cosh ൬

3
2
𝑞ଶ
𝜎௛
𝜎ெ
൰ െ 1

െ ሺ𝑓𝑞ଵሻଶ ൌ 0 
(1) 

 

Where 𝜎௘௤௏ெ ൌ ටଷ

ଶ
𝑺:𝑺  is the von Mises effective 

stress (where 𝑺 represents the deviatoric stress tensor 

and : shows double dot contraction), 𝜎ெ is the yield 

strength of the fully dense matrix, 𝜎௛ stands for the 

hydrostatic stress, and 𝑓 represents the porosity volume 

fraction. It is worth mentioning that the well-known von 

Mises yield criterion can be derived from Eq. (1) when 

𝑓 ൌ 0. Tvergaard and Needleman determined  the 

coefficients 𝑞ଵ ൌ 1.5 and 𝑞ଶ ൌ 1 to achieve the best 

correlation with the simulation results of a unit cell 
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containing voids [15, 16]. It was observed that, due to 

the stress heterogeneity imposed by voids, yield 

functions typically exhibit a dependency on the third 

stress invariant [22]. However, in classical plasticity, the 

dependency of the yield function on the third invariant 

has been neglected. The Lode angle is defined to account 

for the third invariant of the stress tensor as follows [19]:  

 

𝜃 ൌ
1
3

arccos ሺ
27
2

𝐽ଷ
ᇱ

𝜎௘௤௏ெ
ଷሻ 

 

(2) 

Where 𝐽ଷ
ᇱ ൌ det ሺ𝑺ሻ represents the third invariant of 

the deviatoric stress tensor (𝑺). The non-quadratic 

equivalent stress is defined as [17]: 
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As seen from Eq. (3), it is insightful to express the 

effective stress as the product of the von Mises effective 

stress and a function of the Lode angle, 𝑔ሺ𝜃ሻ. 

The Hershey-Dalgreen-Hosford yield function (𝜙) is 

an extension of the von Mises yield function with the 

following formulation of the Lode angle [17]: 
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(4) 

      

Here, 𝑚 represents an integer that should be obtained 

from experimental data. Similarly, Willam and Warnkle 

introduced the following function for 𝑔ሺ𝜃ሻ [23]:
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𝜋
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 (5)

Where, 𝛽 is an adjusting parameter used to align the 

model with experimental data. In this research, the 

extension of the von Mises yield function for the porous 

material was used [17, 19]: 

 
𝜙 ൌ 𝜎௘௤௏ெ𝑔ሺ𝜃ሻ െ ሺ1 െ 𝑓ሻ𝜎ெ ൌ 0 

 

  (6) 

As mentioned earlier, 𝑓 represents the volume 

fraction of voids, and this yield function reduces to the 

yield function of Eq. (4) for fully dense material when 

𝑓 ൌ 0. Considering the modification of Eq. (3) (the non-

quadratic form of effective stress 𝜎௘௤), the new form of 

the Gurson model can be defined to include the Lode 

angle (third invariant of deviatoric stress) as [18, 19]: 

 

𝜙 ൌ ሺ
𝜎௘௤
𝜎ெ

ሻଶ ൅ 2𝑓𝑞ଵ cosh ൬
3
2
𝑞ଶ
𝜎௛
𝜎ெ
൰ െ 1 െ ሺ𝑓𝑞ଵሻଶ

ൌ 0 
(7) 

Since 𝜎ெ represents the instantaneous yield strength 

of the matrix (fully dense material), the hardening or 

softening during plastic deformation must be defined by 

an appropriate stress-strain relationship. This 

relationship should typically be calibrated using uniaxial 

tension and compression tests, especially for pressure-

dependent materials. In the current research, we used the 

Voce model that relates the matrix yield strength ሺ𝜎ெሻ 

to the effective plastic strain (𝜀ሻ̅ as follows [18]: 
 

𝜎ெ ൌ 𝐴 ൅ 𝐵ሺ1 െ 𝐶𝑒஽ఌതሻ 
 

(8) 

Where 𝐴, 𝐵, 𝐶, and 𝐷 are material parameters that 

should be defined by the fitting to the experimental data. 

The deformation mode can alter the void volume 

fraction, and the volume fraction increment proposed in 

[18, 24] is modified here by an adjusting parameter 𝛼 to 

control the rate of increase in the volume fraction of 
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porosities: 

 

𝑑𝑓 ൌ ሺ1 െ 𝑓ሻ𝛼𝑑𝜀௜௜
௣ (9) 

 

Where 𝑖 represents the dummy index, and 

summation over it is implied. It is worth mentioning that 

the parameter 𝛼 is usually considered to be 1, and in 

exceptional cases, its specific value will be noted in the 

context. The plastic strain tensor 𝜺௣ is defined by the 

flow rule as: 
 

𝑑𝜺௣ ൌ 𝑑𝜆
𝜕𝜙
𝜕𝜎

 

 

(10) 

In Eq. (10), 𝑑𝜆 is a scalar parameter, and 𝜎 represents 

the stress tensor. Although Eq. (9) can be evaluated 

numerically, with the simplifying assumption that the 

plastic strain is not affected by the void volume fraction, 

Eq. (9) can be integrated as follows: 

 

𝑓 ൌ 1 െ ሺ1 െ 𝑓଴ሻ𝑒
ିఈఌ೔೔

೛
 

 

(11) 

Here, 𝑓଴ represents the initial volume fraction of 

porosities.  

In the following sections, we aim to identify the most 

suitable yield surface that corresponds to the 

experimental data of a non-uniform sample made from 

steel, untreated elk antler (UEA), cellular polyurethane 

foam (CPF), and porous hierarchical bioscaffold (PHB). 

This analysis will take into account the porosity of their 

microstructures and their observed mechanical behavior. 

In the first step, the resulting yield loci were plotted by 

considering Eqs. (4) to (7) in Maple software. To 

simulate the response of samples to mechanical loading, 

COMSOL Multiphysics was programmed to consider 

Eqs. (4) to (7). Linear elements and symmetry boundary 

conditions were used in all simulations due to the 

geometry of the investigated samples (see Figs. 5 and 8). 

In the uniaxial test simulation, the tensile boundary 

condition was imposed on the loaded edge and in the 

compression test simulations, contact with a rigid platen 

was considered (see Fig. 8).  

 
 

3. Materials 
 

In the first step, the modified von Mises yield criterion 

incorporating the Lode angle was studied in the uniaxial 

tension of Chinese steel Q235B [25]. Additionally, an 

untreated elk antler [7], a porous hierarchical bioscaffold 

(used for bone regeneration) [20], and a cellular 

polyurethane foam (for simulating trabecular bone) [21] 

were used to justify the modified Gurson yield surfaces. 

The coefficients of the Voce model, derived from fitting 

to the plastic deformation data reported in the literature, 

along with the dimensions of the finite element (FE) 

analysis for the simulated sample, were presented in 

Table 1. The results of the fittings, performed using a 

Python code that utilizes the curve fitting function from 

the SciPy library, can be seen in Fig. 1.  

 

4. Results and Discussion 
 

Researchers are keen to find a yield surface that can 

predict the yield behavior of various materials. By 

combining Eqs. (5) and (6) and considering 0.5 ൑ 𝛽 ൑

1 to ensure the convexity of the yield surface [17], 

different shapes of the yield surface are obtained, as 

shown in Fig. 2. In the following discussion, non-

dimensional stress axes are used to represent the yield 

locus (or surface) by normalizing the stresses with the 

yield strength (𝑌). It is observed that although different 

yield loci predict similar yielding under uniaxial loading, 

they exhibit varied behavior under other loading modes. 

Therefore, it is possible to determine an appropriate 

yield surface for different materials by adjusting the 𝛽 

parameter and the void volume fraction. In Fig. 2, for 

𝛽 ൌ 1 the von Mises yield surface can be captured, and 

it can be observed that similar stress magnitudes produce 

yielding in both uniaxial and balanced biaxial loadings. 

Additionally, by varying the 𝛽 parameter, different 

balanced biaxial tension in plastic deformation can be 

captured. Moreover, it is evident that balanced biaxial 

compression remains unchanged for different 𝛽 

parameters, in contrast to balanced biaxial tension. This 

is particularly interesting in the compression mode, as 

higher yield strength is expected in this mode, especially 

for pressure-dependent materials. 
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Table 1. Mechanical properties and test sample size of untreated elk antler [7], porous hierarchical bioscaffold [20], cellular 

polyurethane foam [21], and steel Q235B [25] 

 A (MPa) B (MPa) C D Sample size (mm3) 

Untreated elk antler (UEA) [7] 8.54 5.92 -1.02×10-2 -30.22 7.5 × 5 × 5 

Porous hierarchical bioscaffold (PHB) [20] 21.04 31.94 -5.07 280 7.5 × 5 × 1 

Cellular polyurethane foam (CPF) [21] 1.72 1.31 1.38 30.45 8 × 8 × 8 

Q235B steel [25] 250.58 261.41 -1.07 15 90 × 40 × 3 

 

 
Fig. 1. Results of Voce model fitting with experimental data of (a) elk antler [7], (b) porous hierarchical bioscaffold [20], (c) 

cellular polyurethane foam [21], and (d) Q235B steel [25]. 
 

By considering the same yield function (Eq. (6)) and 

only changing the 𝑔ሺ𝜃ሻ function (Eq. (4)), different yield 

loci can be obtained, as shown in Fig. 3 (Hershey-

Dalgreen yield surface). As seen for 𝑚 ൌ 1, the Tresca 

yield locus can be obtained; additionally, as 𝑚 increases, 

the yield loci approach the Tresca yield locus again. This 

demonstrates that different yield loci can be achieved by 

simply altering the yield function parameters. 

Comparing Figs. 2 and 3 reveals that the Hershey-

Dalgreen yield loci represent similar behavior for the 

uniaxial and balanced biaxial modes, in contrast to the 

Willam-Warnke yield function. 

The Gurson model has been successfully used to 

predict the mechanical behavior of porous materials 

[24]. As previously mentioned, the third invariant, or 

equivalently, the Lode angle, influences the plastic 

deformation of porous media because the stress state 

significantly affects the plastic deformation. Therefore, 

Eqs. (4) and (7) were used to construct the modified 

Gurson yield function, and the yield loci for different 𝑚 

values can be seen in Fig. 4. The case of zero porosity 

volume fraction in Eq. (7) is equivalent to the von Mises 

yield criterion, and thus 𝑓 ൌ 0.1 was considered here. 

From Fig. 4, it can be observed that the uniaxial and 

balanced biaxial modes coincide for different 𝑚 

parameters. As 𝑚 → ∞, the yield loci approach a 
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hexagon with smooth apices. 

In the tension of a uniform specimen, the tensile 

stress is uniformly distributed across the entire sample 

before necking occurs. In this case, the stress-strain 

experimental data can be fitted using the Voce model, as 

shown in Fig. 1. The experimental data can typically be 

captured using finite element constitutive modeling by 

choosing a yield criterion for the plastic mechanical 

behavior, such as the von Mises criterion. However, 

when a non-uniformity is introduced into the geometry 

of the samples, it is expected that the experimental data 

for this geometry can still be accurately captured by 

finite element modeling. However, as the geometrical 

non-uniformity disrupts the uniaxial stress state in the 

tension test, this expectation is not met. To address this 

issue, we used the experimental data on the standard 

tensile specimen from Q235B steel [25] to fit with the 

Voce model (Table 1 and Fig. 1(d)). These data were 

used to simulate the tensile behavior of a non-uniform 

geometry in the tensile deformation (Fig. 5), and 

comparison between the experimental [25] and 

simulated results can be seen in Fig. 6. From Fig. 6(a), it 

can be observed that due to the change in the stress state 

in the non-uniform sample, the von Mises yield criterion 

ሺ𝑚 ൌ 2ሻ cannot accurately predict the experimental 

data. By adjusting the 𝑚 value to 𝑚 ൌ 12, the 

experimental data in the plastic regime can be captured 

accurately. 

 
Fig. 2. Willam-Warnke yield locus at different 𝛽 parameters 

of Eq. (5) and 𝑓 ൌ 0 in Eq. (6). 

 

 
Fig. 3. Hershy-Dalgreen yield locus at different 𝑚 parameters 

of Eq. (4) and 𝑓 ൌ 0 in Eq. (6). 
 

 
Fig. 4. Modified Gurson yield loci at different 𝑚 parameters 

of Eq. (4) and 𝑓 ൌ 0.1 in Eq. (7). 

 

This agreement is attributed to the shear stresses in 

this geometry, in contrast to the uniform samples, which 

lead to non-uniform stress and strain distribution, as can 

be seen in Figs. 6(b) and 6(c).    

The cortical (compact) and cancellous (trabecular) 

bones are the two main parts of bone, with the density 

and morphology of the cancellous part depending on the 

applied stress [7]. From another perspective, 

polyurethane (PU) foam can be used to simulate 

trabecular bone [21]. 
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Fig. 5. Non-uniform tensile specimen with dimension 265 × 

40 × 3 mm3 and necking radius of 10 mm. 

 

Thereby, the mechanical behavior of bone and PU 

foam was investigated, as mentioned earlier, from both 

constitutive modeling and experimentally. The stress 

state, such as tension or compression, plays a significant 

role in the plastic deformation of porous and cellular 

materials. The modified Gurson model was applied to 

the elk antler (𝑚 ൌ 16), PU foam (𝑚 ൌ 8), and bovine 

cortical bone bioscaffold (𝑚 ൌ 16) by taking into 

account the Voce hardening model (Table 1). The results 

of the stress-strain behavior in compression loading for 

different relative densities of elk antler, PU foam, and 

bovine cortical bone bioscaffold can be seen in Fig. 7. 

Fig. 7(a) shows that with increasing relative density, the 

material strength also increases. In the stress-strain 

curve, initial hardening is observed due to a decrease in 

void volume fraction in the compressive stress state. 

After sufficient densification, the rate of strain softening 

of the solid matrix (Fig. 1(a)) exceeds the hardening rate 

due to decreasing porosity. It can be seen that the trend 

of the curves follows the experimental data, indicating 

that the Lode dependency of the yield function has a 

suitable form. Other hardening models can be used to 

better agree with experimental data, especially at higher 

densities, but this is not the scope of the current research.  

Bioscaffolds are usually porous, as they are candidates 

for tissue regeneration, and they must also provide 

sufficient mechanical support. In the previous research, 

the hierarchical structure of the scaffold was considered 

in the geometry of the simulated sample [20]. Due to the 

complex geometry of the scaffold, this method can only 

be used in a representative volume element (RVE) of the 

material. Therefore, computation is feasible only on a 

small-scale RVE, not a macro sample. In the current 

research, we considered the porosity as a parameter in 

the proposed yield function and the current formulation 

was applied to a regular (non-porous) geometry in the 

simulations. The results of sample tension for a 55% 

porosity can be seen in Fig. 7(b), and a good agreement 

can be seen between the simulation and experimental 

data. Therefore, by selecting a suitable yield function, 

the deformation of complex microstructure-based 

materials can be simulated on a macro scale with similar 

results. It is worth mentioning that in previous research, 

micro-CT reconstructed the RVE geometry, and this 

method cannot be used to scaffold on a macro-scale, 

while the current formulation can be used on any scale. 

Polyurethane (PU) foam represents a behavior 

similar to trabecular bone and is often used in 

biomechanical tests. The mechanical behavior of PU 

foam was studied using the modified Gurson model and 

Voce hardening model. As seen in Fig. 1(c), the stress-

strain data from peak stress to steady stress in the plastic 

deformation region was used to obtain the Voce model 

parameters. As a wide variety of PU foams, from solid 

to cellular types, are used in tests, to accommodate the 

test data, 𝛼 in Eq. (11) was considered equal to 0.2. As 

the Voce model overestimates the peak stress in Fig. 

1(c), the peak stress in Fig. 7(b) also shows higher 

values. However, in the softening region, the proposed 

model can accurately capture the mechanical behavior of 

PU foam. By comparing Figs. 6(a), 7(a), and 7(b), it can 

be seen that the current model can be used for metals, 

bone, and foams with both hardening and softening 

behavior. To the best of our knowledge, this is the first 

time that a plasticity model has been applied to such a 

wide variety of materials. 
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Fig. 6. (a) Comparison between simulated and experimental data [25] for non-uniform geometry of Fig. 5, (b) stress (Pa), and (c) 

strain distribution in tension of non-uniform specimen.

It is understood that barreling in the compression test 

occurs due to friction and usually leads to the formation 

of shear bands in compressed specimens. However, the 

appearance of barreling in porous materials can differ 

from that in non-porous materials. The results of PU 

foam compression tests for 1% porosity and 40% 

porosity, with a Coulomb friction coefficient of 0.1, can 

be seen in Fig. 8. By comparing Figs. 8(a) and 8(b), it 

can be concluded that with an increase in the porosity 

volume fraction, the barreling decreases. As can be seen 

from Figs. 8(a) and 8(b), this reduction is attributed to 

the increased compressibility of the material as the 

porosity level rises.
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Fig. 7. Comparison between simulated and experimental data of (a) elk antler, (b) bovine cortical bioscaffold, and (c) PU foam. 
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Fig. 8. Volumetric plastic strain and barreling appearance: (a) 1% porosity and (b) 40% porosity. 

 

5. Conclusion 

 

It is well known that the Lode angle accounts for the 

stress state, and in this work, its influence on the plastic 

deformation of dense and porous materials was 

considered. To model the mechanical behavior of 

widespread materials using plasticity models, the von 

Mises and Gurson yield functions were multiplied by a 

function of the Lode angle. The Voce model was 

invoked to consider the hardening/softening of materials 

in the uniaxial test. The material parameters of the Voce 

model were extracted by fitting them to the experimental 

data. Results showed that extensive yield loci can be 

obtained by changing the Lode function parameters, 

while without considering the Lode angle's function, the 

yield locus's shape does not change. 

A comparison of the uniaxial tension test on the non-

uniform geometry of samples showed that the Lode 

angle should be taken into account as the stress 

distribution in the sample is not uniform. It was observed 

that to accurately model the mechanical behavior of elk 

antler, the Gurson model can be used with a function of 

the Lode angle, as the porosity in the antler creates 

pressure-dependent materials, and in this case, the stress 

state during plastic deformation must be considered. 

Results from bioscaffold modeling demonstrated that 

instead of using a complex geometry at the microscale, 

the current formulation can be applied on a non-porous 

sample, with the effects of porosity (microstructure) 

accounted for by the volume fraction of porosities. The 

results of compressing porous PU foam showed that the 

appearance of barreling depends on both friction and 

porosity, in contrast to solid materials, which depend 

only on friction. Finally, we hope that future research 

will lead to the proposal of a general yield function 

capable of addressing the plastic deformation of various 

materials rather than relying on multiple proposed yield 

functions.  
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