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Abstract: In this work, a support vector machine (SVM) model was developed to predict the hot
deformation flow curves of AZ91 magnesium alloy. The experimental stress-strain curves, obtained
from hot compression testing at different deformation conditions, were sampled. Consequently, a
data base with the input variables of the deformation temperature, strain rate and strain and the
output variable of flow stress was prepared. To develop the support vector machine (SVM) model,
the overall data was divided into two subsets of training and testing (randomly selected). Root mean
square error (RMSE) criterion was used to evaluate the prediction performance of the developed
model. The low RMSE value calculated for the developed model showed the robustness of it to
predict the hot deformation flow curves of tested alloy. Also, the performance of the SVM model
was compared with the performance of some previously used constitutive equations. The overall
results showed the better performance of the SVM model over them.
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1. Introduction
Low density, high strength to weight ratio and excellent castability are the main characteristics of
magnesium alloys that make them good candidates for transportation industries applications [1-3].
However, because of low workability of these alloys at room temperature (that is the result of their HCP
crystal structure); almost all manufacturing processes of them are conducted at elevated temperatures [1,
4]. Finite element simulation is an efficient way to analyze and control the metal forming processes. To
develop a finite element simulation (especially, at hot working condition) it is needed to describe the
flow stress of under studied material through a constitutive model. As explained by Lin and Chen [5], the
constitutive models can be divided into three categories including phenomenological models, physical-
based models and artificial neural network (ANN) models [5].

Phenomenological models are models which are used to fit a mathematical function on the
experimental flow curves obtained at different deformation conditions (usually, through the hot compression
testing). Johnson-Cook and Arrhenius-type equations are the most famous models of this category that have
ever been used to describe the flow stress behavior of different materials [6, 7]. As a case study, the
predictability of Johnson-Cook and Arrhenius-type equations for modeling the hot deformation behavior of
Mg-6Al-1Zn has been evaluated by Abbasi-Bani et al. [8].

On the other hand, physical-based models are models which are developed based on physical
aspects of the material behaviors such as thermally activated dislocation movement and kinetics of slips.
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Zerilli-Armstrong (ZA) model [9], dynamic recrystallization (DRX) model [10] and Preston—-Tonks—
Wallace (PTW) model [11] are some examples of this category.

Also, ANN models have widely been used for flow stress modeling. Mirzadeh et al. [12] developed a
neural network model to predict the flow curves of three different steel types. They showed the higher
accuracy of developed model over the two other phenomenological constitutive equations. Though, the
neural network models act as a black box, a trained neural network that is developed based on the
experimental data can be used as a lateral module accompanying with a FEM code to simulate the hot
deformation processing of different materials.

Besides the three main categories of phenomenological models, physical-based models and artificial
neural network (ANN) models (categorized by Lin and Chen [5]), the ability of support vector machine
(SVM) technique to predict the flow stress of austenitic stainless steel 304 has been investigated by Desu et
al. [13], in a recent work. According to the literature survey, this is the only work conducted to examine the
capability of SVM for flow stress modeling. This technique acts as a black box and, in a way similar to the
ANN models, can be used as a lateral module accompanying with a FEM code for flow stress description
of the materials.

The main contribution of the present study is to evaluate the capability of the SVM model to predict
the hot deformation flow curves of AZ91 magnesium alloy. For this reason, the experimental flow curves
of tested alloy, obtained from hot compression testing (at different deformation temperatures and
strain rates), were sampled for different strains with a predefined interval. Thus, a data base with the input
variables of the deformation temperature, strain rate and strain and the output variable of flow stress was
prepared. To develop the support vector machine (SVM) model, the overall data was divided into two
subsets of training and testing (randomly selected). The training data set was used to establish the SVM
model. Scatter diagrams together with the root mean square error (RMSE) criterion were used to compare
the results of modeled flow curves with the experimental ones for both training and testing data sets. Also,
the performance of the developed SVM model was compared with the performances of three previously
examined constitutive equations on the same experimental flow curves [14].

2. Experimental Flow Curves

The experimental flow curves of the tested alloy were obtained from the hot compression tests conducted
on a 250 kN Zwick tensile/compression testing machine equipped with a radiant furnace with the
temperature accuracy of 5 °C [15]. More details about the hot compression testing of the tested alloy have
been reported in Ref. [15]. The obtained flow curves that have been used to develop the SVM model for the
tested AZ91 magnesium alloy are presented in Fig. 1. As can be seen, the flow stress increases to a peak
value and then gradually falls to a steady state stress which is an indication of the occurrence of dynamic
recrystallization (DRX) and precipitate coarsening [16, 17]. However, as it can be seen in Fig. 1, at highest
strain rates of 1 s’ and different temperatures, steady state can hardly be seen that means in such conditions
flow curves reach to the steady sate stress at strains beyond the tested strains (i.e. after the strain of 0.5).
Moreover, as expected, the flow stress increases with an increase in strain rate and a decrease in deformation
temperature.
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Fig. 1. Experimental flow curves of AZ91 magnesium alloy obtained at different deformation conditions [15].

3. Phenomenological Models
In this section, the results of previously used phenomenological constitutive models to describe the hot
deformation flow curves of AZ91 magnesium alloy are presented from the literature (previous work of the
Author(s)) [14]. These include the Arrhenius equation with strain dependent constants, the exponential
equation with strain dependent constants and a recently developed simple model (developed based on a

power function of Zener-Hollomon parameter and a third order polynomial function of ¢ power a constant
number). The overall results are as follows:

3.1. Arrhenius-type equation

Using the Arrhenius equation with strain dependent constants the hot deformation flow stress of AZ91
magnesium alloy can be described through the following equation:
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o =2m{@/mm + @147 + 1]} 1)

while the strain dependent constants of this equation can be calculated using the following relations [14]:

a = 0.518&* — 0.746¢® + 0.375¢2 — 0.062¢ + 0.015 2
n = —293.0¢3 + 310.5¢% — 100.1¢ + 14.49 3)
Q = 11479887¢* — 14,137,096 + 6358104¢? — 1339535¢ + 286328 4)
InA = 2281.237¢* — 2760.780e3 + 1206.529¢? — 243.762¢ + 48.668 (5)

3.2. Exponential-type equation
Using the exponential equation with strain dependent constants the hot deformation flow stress of AZ91
magnesium alloy can be described through the following equation:

o= (Iné +L — nA")/p (6)
while the strain dependent constants of this equation can be calculated using the following relations [14]:

B = —5.913¢% + 6.204c% — 1.886¢ + 0.251 (7
Q = —937464.653® + 1181186.145¢? — 564241.074¢ + 258298.730 (8)
InA" = 181.5e% — 161.9¢% + 21.02¢ + 26.16 9)

3.3. The equation developed based on a power function of Zener-Hollomon parameter and a third
order polynomial function of € power a constant number

Using the developed model based on a power function of Zener-Hollomon parameter and a third order
polynomial function of & power a constant number, the hot deformation flow stress of AZ91 magnesium
alloy can be described as follows [14]:

0 = & 0122exp(ZE ) x (~3.333 + 41.3356%% — 74.5512°° + 41.322¢'2) (10)

4. Support Vector Machine
As mentioned before, SVM can be used for applications such as classification and regression. In SVM
method for regression, using N training data ({(xi, yi) | i = 1, ..., N}) the input space x is transferred into a
higher dimensional feature space (applying the kernel functions) at the first; then, a linear machine is
constructed in the feature space [18, 19]:

fx)=WT@(x)+ b (11)
where W = [wy, ...,wy]T is the weight vector that controls the smoothness of the model, @(x) is the

transformation function (kernel function) and b is the bias. In the relation above, the values of weights and
bias vectors are calculated by minimizing the regularized risk function [14]:

R(F) = IWI2 + C XMy L(ye £ (1) (12)
where L(y;, f(x;)) is the epsilon sensitive loss function:

_ {0 if lyi—fxdl <e
Ly f () = {lyi —flx)|—¢ otherwise (13)

According to the ¢ value, the data points inside the & tube (|y; — f(x;)| < €) are considered as zero loss;
while, the data points out of the ¢ tube, called the support vectors, participate in training error loss. Hence,
the size of ¢ insensitive zone controls the number of support vectors. Increasing in the ¢ insensitive zone
controls the number of support vectors [20].
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Two nonnegative slack variables ¢; and & are introduced to measure the deviation of training data
points outside the ¢ insensitive zone. So, in SVM, the optimization problem is to minimize the following
function [21, 22]:

min W2+ CEN, & +& (14)
subject to

yi —WTd(x))—b<e+§; i=1,..,N (15)
-y +WTo(x)+b<e+& i=1..,N (16)
§,60=0 i=1,..,N (17)
Using Lagrange multiplier, the dual form of this optimization problem can be solved as in the follow:

max — > 21 (a; — af) (@; — @)K (%)) = € T (@ + @) + T yila — af) (18)
subject to

YN (@i —a)) =0, a;,af €[0,C] (19)

where « and «* are Lagrangian multipliers and K (x;, x;) = @(x;)"®(x;) is the kernel matrix. In addition to
the latter constraints, Karush-Kuhn-Tucker conditions should also be satisfied [22, 23]. Usually, a Gaussian
radial basis function is used as the kernel function:

202

K (x;,x;) = exp (— e ) (20)
Thus, the final form of the function f(x) is given by:
fO) =ELi(ai —ai) K(x;,x) + b (21)

It is obvious that the prediction performance of a SVM model, depends on the proper selection of its
parameters including: kernel parameter o, the capacity C and the parameter of «.

5. Results and Discussion

The experimental flow curves obtained from hot compression tests at different deformation temperatures
and strain rates [15] were sampled for the strains in the range of 0.05 to 0.5 with step size of 0.01. Thus, a
data base with the input variables of the deformation temperature, strain rate and strain and the output
variable of flow stress with 690 patterns was prepared. The prepared data base was divided into two
subsets of training and testing. Two third of the overall data (i.e. 460 randomly selected patterns) was
used as training data to develop the SVM model and the rest was used to test the developed SVM model
for unseen data. The online SVR toolbox for MATLAB application developed by Parrella [23] was
applied to predict the flow stress of tested alloy. The RMSE criterion was used to assess the prediction
performance of the developed model:

RMSE = [FEIL,0 = FG) (22)

where y; is the target output, f(x); is the model output and n is the number of data patterns. After some trial
and error, the values of kernel parameter o, the capacity C and the parameter of ¢ were selected as 30, 10
and 0.01, respectively. Using the scatter diagrams, the results obtained for training, testing and overall data
patterns experimental flow stresses are shown in Fig. 2.
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Fig. 2. The comparison between the experimental and modeled flow curves (using the SVM model) for
training, testing and overall data patterns.
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As can be seen there is a good agreement between the experimental flow stresses and the modeled ones.
These, together with low RMSE value, obtained for training, testing and overall data (see table 1) shows the
robustness of the SVM model to predict the hot deformation flow curves of tested alloy.
Table 1. RMSE values obtained for training, testing and overall data patterns.
Training data patterns Testing data patterns Overall data patterns
RMSE criterion (MPa) 1.83 2.28 1.99

Also, a comparison between the experimental and calculated flow curves (using the SVM model) at
deformation conditions with two temperatures of 375 and 400 °C with different strain rates are presented
in Figs. 3a and 3b, respectively.
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Fig. 3. The comparison between the experimental and modeled flow curves (using the SVM model) at
deformation conditions with two temperatures of (a) 375 and (b) 400 °C with different strain rates.

As can be seen, there is a good consistency between the modeled and experimental flow curves. Moreover,
as can be seen the strain hardening and work softening stages appeared in DRX flow curves of tested alloy
can be modeled, simultaneously. These together with the low RMSE value of 1.99 MPa obtained for overall
data shows the high performance of the developed SVM model in modeling the hot deformation flow curves
of the tested alloy. In Table 2, the RMSE value obtained for the developed SVM model is compared with
the RMSE values of the other previously examined constitutive equations [14].

Table 2. RMSE values obtained for the SVM model and previously examined constitutive models.

Examined model RMSE criterion (MPa)
SVM model (current study) 1.99
Arrhenius equation with strain dependent constants [14] 4.96
exponential equation with strain dependent constants [14] 5.88

simple model developed based on a power function of Zener-Hollomon parameter and  10.51
a third order polynomial function of € power a constant number [14]

As presented in Table 2, the RMSE value obtained for the developed SVM model shows the better
performance of it over the other investigated constitutive models.

6. Conclusion
A support vector machine (SVM) model was applied to predict the hot deformation flow curves of AZ91
magnesium alloy. The experimental flow curves of tested alloy, obtained from hot compression
testing (at different deformation temperatures and strain rates) were sampled for different strains with a
predefined interval. Therefore, a data base with the input variables of the deformation temperature, strain
rate and strain and the output variable of flow stress was provided. Two thirds of the overall data (randomly
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selected) was used as training data to develop the SVM model and the rest was used to test the developed
model. Root mean square error (RMSE) criterion was used to evaluate the prediction performance of the
developed model. The low RMSE value of 1.99 MPa, obtained from SVM showed the robustness of the
developed model to predict the hot deformation flow curves of tested alloy. Moreover, the performance of
the SVM model was compared with the performance of some previously used constitutive equations. The
overall results showed the better performance of the SVM model over them.
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