Investigation of Fracture Depth of Al/Cu Bimetallic Sheet in Single Point Incremental Forming Process

Document Type : Research Paper

Authors

Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

Single point incremental sheet forming (SPISF) has demonstrated significant potential to form complex sheet metal parts without using component-specific tools and is suitable for fabricating low-volume functional sheet metal parts economically. In the SPIF process, a ball nose tool moves along a predefined tool path to form the sheet. This work aims to optimize the formability and forming forces of Al/Cu bimetal sheet formed by the single-point incremental forming process. Two levels of tool diameter, step size, tool path and sheet arrangement were considered as the input process parameters. The process parameters influential in the formability and forming forces have been identified using the statistical tool (response table, main effect plot and ANOVA). Analysis of variance (ANOVA) was used to indicate potential differences among the means of variables by testing the amount of population within each sample, which enabled it to show the effects of input variables on output ones. A multi response optimization was conducted to find the optimum values for input parameters by response surface methodology (RSM), and the confirmatory experiment revealed the reliability of RSM for this approach.         

Keywords


 [1]  J. Jeswiet, D. Adams, M. Doolan, T. McAnulty, P. Gupta, Single point and asymmetric incremental forming, Advances in Manufacturing, 3 (2015) 253-262.
[2]  J. Jeswiet, E. Hagan, and A. Szekeres, Forming parameters for incremental forming of aluminium alloy sheet metal, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216 (2002) 1367-1371.
[3]  M.B. Silva, P. Teixeira, A. Reis, P.A.F. Martins, On the formability of hole-flanging by incremental sheet forming, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 227 (2013) 91-99.
[4]  L. Montanari, VA. Cristino, MB. Silva, P.A.F. Martins, On the relative performance of hole-flanging by incremental sheet forming and conventional press-working, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 228 (2014) 312-322.
[5]  G. Ambrogio, L. Filice, G.L. Manco, Warm Incremental forming of magnesium alloy az31, CIRP Annals-Manufacturing Technology, 57 (2008) 257-260.
[6]  G.L. Manco, G. Ambrogio, Influence of Thickness on Formability in 6082-T6, International Journal of Material Forming, 3 (2010) 983-986.
[7]  M.J. Mirnia, B. Mollaei Dariani, H. Vanhove, J.R. Duflou, An Investigation into thickness distribution in single point incremental forming using sequential limit analysis, International Journal of Material Forming, 7 (2014) 469-477.
[8]  E. Hagan, J. Jeswiet, Analysis of surface roughness for parts formed by computer numerical controlled incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 218 (2004) 1307-1312.
[9]  L. Fratini, G. Ambrogio, R. Di. Lorenzo, L. Filice, F. Micari, Influence of mechanical properties of the sheet material on formability in single point incremental forming, CIRP Annals-Manufacturing Technology, 53 (2004) 207-210.
[10]     H. Iseki, An approximate deformation analysis and fem analysis for the incremental bulging of sheet metal using a spherical roller,  Journal of Materials Processing Technology, 111 (2001) 150-154.
[11]     H. Iseki, T. Naganawa, Vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers, Journal of Materials Processing Technology, 130 (2002) 675-679.
[12]     L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Annals-Manufacturing Technology, 51 (2002) 199-202.
[13]     A. Attanasio, E. Ceretti, C. Giardini, Optimization of tool path in two points incremental forming, Journal of Materials Processing Technology, 177 (2006) 409-412.
[14]     D. Young, J. Jeswiet, Wall thickness variations in single-point incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218 (2004) 1453-1459.
[15]     G. Hussain, L. Gao, ZY. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, The International Journal of Advanced Manufacturing Technology, 37 (2008) 920-926.
[16]     K. Hamilton, J. Jeswiet, Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequences, CIRP annals, 59 (2010) 311-314.
[17]     S. Kurra, S. Regalla, A. K. Gupta, Parametric study and multi-objective optimization in single-point incremental forming of extra deep drawing steel sheets, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230 (2016) 825-837.
[18]     W. Bao, X. Chu, S. Lin, J. Gao, Experimental investigation on formability and microstructure of Az31b alloy in electropulse-assisted incremental forming, Materials & Design, 87 (2015) 632-639.
[19]     K. Suresh, S. P. Regalla, Analysis of formability in single point incremental forming using finite element simulations, Procedia materials science, 6 (2014) 430-435.
[20]     R. Senthil, A. Gnanavelbabu, Numerical analysis on formability of Az61a magnesium alloy by incremental forming, Procedia Engineering, 97 (2014) 1975-1982.
[21]     V. Mugendirana, A. Gnanavelbabub, Comparison of Fld and thickness distribution on Aa5052 luminium alloy formed parts by incremental forming process, Procedia Engineering, 97 (2014) 1983-1990.
[22]     T. McAnulty, J. Jeswiet, M. Doolan, Formability in single point incremental forming: a comparative analysis of the state of the art, CIRP Journal of Manufacturing Science and Technology, 16 (2017) 43-54.
[23]     EH. Uheida, GA. Oosthuizen, D. Dimitrov, Investigating the impact of tool velocity on the process conditions in incremental forming of titanium sheets, Procedia Manufacturing, 7 (2017) 345-350.
[24]     D. Afonso, R. A. de. Sousa, R. Torcato, Incremental Forming of Tunnel Type Parts, Procedia Engineering, 183 (2017) 137-142.
[25]     M. Honarpisheh, J. Niksokhan, F. Nazari, Investigation of the effects of cold rolling on the mechanical properties of explosively-welded Al/St/Al multilayer sheet, Metallurgical Research & Technology, 113 (2016) 105.
[26]     M. Sedighi, J. Joudaki, H. Kheder, Residual Stresses Due to Roll Bending of Bi-Layer Al-Cu Sheet: Experimental and analytical investigations, The Journal of Strain Analysis for Engineering Design, 52 (2017) 102-111.
[27]     M. Honarpisheh, M. Asemabadi, M. Sedighi, Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer, Materials & Design, 37 (2012) 122-127.
[28]     M. Sedighi, M. Honarpisheh, Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer, Materials & Design, 37 (2012) 577-581.
[29]     M. Asemabadi, M. Sedighi, M. Honarpisheh, Investigation of cold rolling influence on the mechanical properties of explosive-welded Al/Cu bimetal, Materials Science and Engineering: A, 558 (2012) 144-149.
[30]     M. Honarpisheh, M. Dehghani, E. Haghighat, Investigation of mechanical properties of Al/Cu strip produced by equal channel angular rolling, Procedia materials science, 11 (2015) 1-5.
[31]     M. R. Sakhtemanian, M. Honarpisheh, S. Amini, numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/Cp-titanium bimetal sheet, The International Journal of Advanced Manufacturing Technology, 95 (2018) 3781-396.
[32]     M. Honarpisheh, A. Gheysarian, An experimental study on the process parameters of incremental forming of explosively-welded Al/Cu bimetal, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 7 (2017) 73-83
[33]     M. Honarpisheh, M. M. Jobedar, I. Alinaghian, Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology, The International Journal of Advanced Manufacturing Technology, 96 (2018) 3069-3080.
 [34]     M. Honarpisheh, M. Keimasi, I. Alinaghian, Numerical and experimental study on incremental forming process of Al/Cu bimetals: Influence of process parameters on the forming force, dimensional accuracy and thickness variations,  Journal of Mechanics of Materials and Structures, 13 (2018) 35-51.
[35]     M. R. Sakhtemanian, S. Amini, M. Honarpisheh, Simulation and investigation of mechanical and geometrical properties of St/CP-titanium bimetal sheet during the single point incremental forming process, Iranian Journal of Materials Forming, 5 (2018) 1-18.
[36]     M. R. Sakhtemanian, M. Honarpisheh, S. Amini, A novel material modeling technique in the single-point incremental forming assisted by the ultrasonic vibration of low carbon steel/commercially pure titanium bimetal sheet, The International Journal of Advanced Manufacturing Technology, (2018) http://dx.doi.org/10.1007/s00170-018-3148-6.