[1] J. Jeswiet, D. Adams, M. Doolan, T. McAnulty, P. Gupta, Single point and asymmetric incremental forming, Advances in Manufacturing, 3 (2015) 253-262.
[2] J. Jeswiet, E. Hagan, and A. Szekeres, Forming parameters for incremental forming of aluminium alloy sheet metal, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216 (2002) 1367-1371.
[3] M.B. Silva, P. Teixeira, A. Reis, P.A.F. Martins, On the formability of hole-flanging by incremental sheet forming, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 227 (2013) 91-99.
[4] L. Montanari, VA. Cristino, MB. Silva, P.A.F. Martins, On the relative performance of hole-flanging by incremental sheet forming and conventional press-working, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 228 (2014) 312-322.
[5] G. Ambrogio, L. Filice, G.L. Manco, Warm Incremental forming of magnesium alloy az31, CIRP Annals-Manufacturing Technology, 57 (2008) 257-260.
[6] G.L. Manco, G. Ambrogio, Influence of Thickness on Formability in 6082-T6, International Journal of Material Forming, 3 (2010) 983-986.
[7] M.J. Mirnia, B. Mollaei Dariani, H. Vanhove, J.R. Duflou, An Investigation into thickness distribution in single point incremental forming using sequential limit analysis, International Journal of Material Forming, 7 (2014) 469-477.
[8] E. Hagan, J. Jeswiet, Analysis of surface roughness for parts formed by computer numerical controlled incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 218 (2004) 1307-1312.
[9] L. Fratini, G. Ambrogio, R. Di. Lorenzo, L. Filice, F. Micari, Influence of mechanical properties of the sheet material on formability in single point incremental forming, CIRP Annals-Manufacturing Technology, 53 (2004) 207-210.
[10] H. Iseki, An approximate deformation analysis and fem analysis for the incremental bulging of sheet metal using a spherical roller, Journal of Materials Processing Technology, 111 (2001) 150-154.
[11] H. Iseki, T. Naganawa, Vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers, Journal of Materials Processing Technology, 130 (2002) 675-679.
[12] L. Filice, L. Fratini, F. Micari, Analysis of material formability in incremental forming, CIRP Annals-Manufacturing Technology, 51 (2002) 199-202.
[13] A. Attanasio, E. Ceretti, C. Giardini, Optimization of tool path in two points incremental forming, Journal of Materials Processing Technology, 177 (2006) 409-412.
[14] D. Young, J. Jeswiet, Wall thickness variations in single-point incremental forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218 (2004) 1453-1459.
[15] G. Hussain, L. Gao, ZY. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, The International Journal of Advanced Manufacturing Technology, 37 (2008) 920-926.
[16] K. Hamilton, J. Jeswiet, Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequences, CIRP annals, 59 (2010) 311-314.
[17] S. Kurra, S. Regalla, A. K. Gupta, Parametric study and multi-objective optimization in single-point incremental forming of extra deep drawing steel sheets, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230 (2016) 825-837.
[18] W. Bao, X. Chu, S. Lin, J. Gao, Experimental investigation on formability and microstructure of Az31b alloy in electropulse-assisted incremental forming, Materials & Design, 87 (2015) 632-639.
[19] K. Suresh, S. P. Regalla, Analysis of formability in single point incremental forming using finite element simulations, Procedia materials science, 6 (2014) 430-435.
[20] R. Senthil, A. Gnanavelbabu, Numerical analysis on formability of Az61a magnesium alloy by incremental forming, Procedia Engineering, 97 (2014) 1975-1982.
[21] V. Mugendirana, A. Gnanavelbabub, Comparison of Fld and thickness distribution on Aa5052 luminium alloy formed parts by incremental forming process, Procedia Engineering, 97 (2014) 1983-1990.
[22] T. McAnulty, J. Jeswiet, M. Doolan, Formability in single point incremental forming: a comparative analysis of the state of the art, CIRP Journal of Manufacturing Science and Technology, 16 (2017) 43-54.
[23] EH. Uheida, GA. Oosthuizen, D. Dimitrov, Investigating the impact of tool velocity on the process conditions in incremental forming of titanium sheets, Procedia Manufacturing, 7 (2017) 345-350.
[24] D. Afonso, R. A. de. Sousa, R. Torcato, Incremental Forming of Tunnel Type Parts, Procedia Engineering, 183 (2017) 137-142.
[25] M. Honarpisheh, J. Niksokhan, F. Nazari, Investigation of the effects of cold rolling on the mechanical properties of explosively-welded Al/St/Al multilayer sheet, Metallurgical Research & Technology, 113 (2016) 105.
[26] M. Sedighi, J. Joudaki, H. Kheder, Residual Stresses Due to Roll Bending of Bi-Layer Al-Cu Sheet: Experimental and analytical investigations, The Journal of Strain Analysis for Engineering Design, 52 (2017) 102-111.
[27] M. Honarpisheh, M. Asemabadi, M. Sedighi, Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer, Materials & Design, 37 (2012) 122-127.
[28] M. Sedighi, M. Honarpisheh, Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer, Materials & Design, 37 (2012) 577-581.
[29] M. Asemabadi, M. Sedighi, M. Honarpisheh, Investigation of cold rolling influence on the mechanical properties of explosive-welded Al/Cu bimetal, Materials Science and Engineering: A, 558 (2012) 144-149.
[30] M. Honarpisheh, M. Dehghani, E. Haghighat, Investigation of mechanical properties of Al/Cu strip produced by equal channel angular rolling, Procedia materials science, 11 (2015) 1-5.
[31] M. R. Sakhtemanian, M. Honarpisheh, S. Amini, numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/Cp-titanium bimetal sheet, The International Journal of Advanced Manufacturing Technology, 95 (2018) 3781-396.
[32] M. Honarpisheh, A. Gheysarian, An experimental study on the process parameters of incremental forming of explosively-welded Al/Cu bimetal, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 7 (2017) 73-83
[33] M. Honarpisheh, M. M. Jobedar, I. Alinaghian, Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology, The International Journal of Advanced Manufacturing Technology, 96 (2018) 3069-3080.
[34] M. Honarpisheh, M. Keimasi, I. Alinaghian, Numerical and experimental study on incremental forming process of Al/Cu bimetals: Influence of process parameters on the forming force, dimensional accuracy and thickness variations, Journal of Mechanics of Materials and Structures, 13 (2018) 35-51.
[35] M. R. Sakhtemanian, S. Amini, M. Honarpisheh, Simulation and investigation of mechanical and geometrical properties of St/CP-titanium bimetal sheet during the single point incremental forming process, Iranian Journal of Materials Forming, 5 (2018) 1-18.
[36] M. R. Sakhtemanian, M. Honarpisheh, S. Amini, A novel material modeling technique in the single-point incremental forming assisted by the ultrasonic vibration of low carbon steel/commercially pure titanium bimetal sheet,
The International Journal of Advanced Manufacturing Technology, (2018)
http://dx.doi.org/10.1007/s00170-018-3148-6.