[1] T. Tanaka, Controlled rolling of steel plate and strip, International of Materials Reviews, 26 (1981) 185-212.
[2] H. Ding, N. Shen, Y. C. Shin, Predictive modeling of grain refinement during multi-pass cold rolling, J Journal of Materials Processing Technology, 212 (2012) 1003-1013.
[3] A. Salem, M. Glavicic, S. Semiatin, The effect of preheat temperature and inter-pass reheating on microstructure and texture evolution during hot rolling of Ti–6Al–4V, Materials Science and Engineering A, 496 (2008) 169-176.
[4] C. Zheng, N. Xiao, D. Li, Y. Li, Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling, Computational Materials Science, 44 (2008) 507-514.
[5] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, 53 (2008) 893-979.
[6] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Materialia, 47 (1999) 579-583.
[7] D. H. Shin, J. J. Park, Y. S. Kim, K. T. Park, Constrained groove pressing and its application to grain refinement of aluminum, Materials Science and Engineering A, 328 (2002) 98-103.
[8] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia, 35 (1996) 143-146.
[9] J. Xing, H. Soda, X. Yang, H. Miura, T. Sakai, Ultra-fine grain development in an AZ31 magnesium alloy during multi-directional forging under decreasing temperature conditions, Materials Transactions, 46 (2005) 1646-1650.
[10] G. Faraji, A. Babaei, M. M. Mashhadi, K. Abrinia, Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes, Materials Letters, 77 (2012) 82-85.
[11] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, Processing of AZ31 magnesium alloy by a new noble severe plastic deformation method, Materials Science and Engineering A, 528 (2011)1334-1339.
[12] N. Pardis, R. Ebrahimi, Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique, Materials Science and Engineering A, 527 (2009) 355-360.
[13] Q. Wang, Y. Chen, J. Lin, L. Zhang, C. Zhai, Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method, Materials Letters, 61 (2007) 4599-4602.
[14] V. Segal, Slip line solutions, deformation mode and loading history during equal channel angular extrusion, Materials Science and Engineering A, 345 (2003) 36-46.
[15] Y. Miyahara, Z. Horita, T. G. Langdon, Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP, Materials Science and Engineering A, 420 (2006) 240-244.
[16] X. Molodova, G. Gottstein, M. Winning, R. Hellmig, Thermal stability of ECAP processed pure copper, Materials Science and Engineering A, 460 (2007) 204-213.
[17] X. Zhao, X. Yang, X. Liu, X. Wang, T. G. Langdon, The processing of pure titanium through multiple passes of ECAP at room temperature, Materials Science and Engineering A, 527 (2010) 6335-6339.
[18] A. Zhilyaev, D. Swisher, K. Oh-Ishi, T. Langdon, T. McNelley, Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP, Materials Science and Engineering A, 429 (2006) 137-148.
[19] S. Xu, G. Zhao, X. Ren, Y. Guan, Numerical investigation of aluminum deformation behavior in three-dimensional continuous confined strip shearing process, Materials Science and Engineering A, 476 (2008) 281-289.
[20] J. C. Lee, H. K. Seok, J. Y. Suh, Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing, Acta Materialia, 50 (2002) 4005-4019.
[21] W. Wei, W. Zhang, K. X. Wei, Y. Zhong, G. Cheng, J. Hu, Finite element analysis of deformation behavior in continuous ECAP process, Materials Science and Engineering A, 516 (2009) 111-118.
[22] V. P. Basavaraj, U. Chakkingal, T. P. Kumar, Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation, Journal of Materials Processing Technology, 209 (2009) 89-95.
[23] R. B. Figueiredo, P. R. Cetlin, T. G. Langdon, The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Materialia, 55 (2007) 4769-4779.
[24] F. Kang, J. T. Wang, Y. Peng, Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy, Materials Science and Engineering A, 487 (2008) 68-73.
[25] M. S. Ghazani, B. Eghbali, Finite element simulation of cross equal channel angular pressing, Computational Materials Science, 74, (2013) 124-128.
[26] M. S. Ghazani, A. Vajd, Finite Element Simulation of Flow Localization during Equal Channel Angular Pressing, Transactions of the Indian Institute of Metals, 70 (2017) 1323-1328.