[1] R. Ghosh, Remaining life assessment of engineering components, Recent Trends in Structural Integrity Assessment, National Metallurgical Laboratory, India (2001) pp. 1-17.
[2] E. Santecchia, A. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M.E. Mehtedi, S. Spigarelli, A review on fatigue life prediction methods for metals, Advances in Materials Science and Engineering (2016) 1-26.
[3] W. Zhang, H. Liu, Q. Wang, J.J.M. He, A fatigue life prediction method based on strain intensity factor, Materials 10 (7) (2017) 689.
[4] R. Brighenti, A. Carpinteri, N. J. Corbari, Damage mechanics and Paris regime in fatigue life assessment of metals, International Journal of Pressure Vessels and Piping 104 (2013) 57-68.
[5] J. Mazars, G. Pijaudier-Cabot, From damage to fracture mechanics and conversely: a combined approach, International Journal of Solids and Structures 33 (20-22) (1996) 3327-3342.
[6] V. Shenoy, I.A. Ashcroft, G.W. Critchlow, A.D. Crocombe, Fracture mechanics and damage mechanics based fatigue lifetime prediction of adhesively bonded joints subjected to variable amplitude fatigue, Engineering Fracture Mechanics 77 (7) (2010) 1073-1090.
[7] G. C. Sih, E.T. Moyer Jr, Path dependent nature of fatigue crack growth, Engineering Fracture Mechanics 17 (3) (1983) 269-280.
[8] Z. Božić, S. Schmauder, M. Mlikota, Fatigue growth models for multiple long cracks in plates under cyclic tension bas on ΔKI, ΔJ-integral and ΔCTOD parameter, Key Engineering Materials 488 (2012) 525-528.
[9] A. F. Siqueira, C.A.R.P. Baptista, O.L.C. Guimarães, C.O.F.T. Ruckert, Describing the total fatigue crack growth curves for aluminum alloys with an exponential equation, Procedia Engineering 2 (1) (2010) 1905-1914.
[10] E. Richey III, A.W. Wilson, J.M. Pope, R.P. Gangloff, Computer modeling the fatigue crack growth rate behavior of metals in corrosive environments, NASA Contractor Report 194982, Virginia (1994).
[11] T. T. Shih, R.P. Wei, A study of crack closure in fatigue, Engineering Fracture Mechanics 6 (1) (1974) 19-32.
[12] C. Proppe and G. Schuëller, Stochastic analysis of fatigue crack growth, In ICF10, Honolulu, USA (2001).
[13] R. M.V. Pidaparti and M.J. Palakal, Neural network approach to fatigue-crack-growth predictions under aircraft spectrum loadings, Journal of Aircraft 32 (4) (1995) 825-831.
[14] J. Mohanty, B. Verma, D. Parhi, P. Ray, Application of Artificial Neural Network for Predicting Fatigue Crack Propagation Life of Aluminum Alloys, Association of Computational Materials Science and Surface Engineering 1 (2009) 133.
[15] W. Zhang, Z. Bao, S. Jiang, J. He, An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation,
Materials 9 (6) (2016) 483.
[16] H. Wang, W. Zhang, F. Sun, W.J.M. Zhang, A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation, Materials 10 (5) (2017) 543.
[17] W. C. Hong, F.M. Lai, J.H. Wu, P.F. Pai, S.L. Yang, Feasibility Assessment of Support Vector Regression Models with Immune Algorithms in Predicting Fatigue Life of Composites, In Join Conference on Information Sciences, Taiwan (2006) 1220.
[18] W. Song, Z. Jiang, H. Jiang, Predict the fatigue life of crack based on extended finite element method and SVR, In AIP Conference Proceedings 1967 (1) (2018) 30024.
[19] J. Mohanty, T. Mahanta, A. Mohanty, D. N. Thatoi, Prediction of constant amplitude fatigue crack growth life of 2024 T3 Al alloy with R-ratio effect by GP, Applied Soft Computing 26(2015) 428-434.
[20] Y. Cheng, W. Huang, C.J. Zhou, Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring, International Journal of Pressure Vessels and Piping 76 (2) (1999) 113-116.
[21] M. E. Haque, K. J. Sudhakar, Prediction of corrosion–fatigue behavior of DP steel through artificial neural network, International Journal of Fatigue 23 (1) (2001) 1-4.
[22] J. A. K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers, Neural Processing Letters 9 (3) (1999) 293-300.
[23] C. Cortes, V. Vapnik, Support-vector networks, Mach Learn 20 (3) (1995) 273-297.
[24] V. Vapnik, The Nature of Statistical Learning Theory, Springer (2000).
[25] A. Baylar, D. Hanbay, M. Batan, Application of least square support vector machines in the prediction of aeration performance of plunging overfall jets from weirs, Expert Systems with Applications 36 (4) (2009) 8368- 8374.
[26] S. Rafiee-Taghanaki, M. Arabloo, A. Chamkalani, M. Amani, M.H. Zargari, M.R. Adelzadeh, Implementation of SVM framework to estimate PVT properties of reservoir oil, Fluid Phase Equilibria 346 (2013) 25-32.
[27] E. D. Übeyli˙, Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals, Expert Systems with Applications 37 (1) (2010) 233-239.
[28] S. R. Amendolia, G. Cossu, M. L. Ganadu, B. Golosio, G. L. Masala, G.M. Mura, A comparative study of K-Nearest Neighbour, Support Vector Machine and Multi-Layer Perceptron for Thalassemia screening, Chemometrics and Intelligent Laboratory Systems 69 (1-2) (2003) 13-20.
[29] T. S. Chen, J. Chen, Y.C. Lin, Y.C. Tsai, Y.H. Kao, K. Wu, A Novel Knowledge Protection Technique Base on Support Vector Machine Model for Anti-classification, In Zhu M (ed) Electrical Engineering and Control, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg (2011) 517-524.
[30] Y. F. Zhang, J.Y.H. Fuh, A Neural Network Approach for Early Cost Estimation of Packing Products, Computers & Industrial Engineering 34 (2) (1998) 433-450.
[31] S. Deng, T.H. Yeh, Applying least squares support vector machines to the airframe wing-box structural design cost estimation, Expert Systems with Applications 37 (12) (2010) 8417-8423.
[32] J. Bode, Decision support with neural networks in the management of research and development: Concepts and application to cost estimation, Information and Management 34 (1) (1998) 33-40.
[33] B. Verlinden, J.R. Duflou, P. Collin, D. Cattrysse, Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study, International Journal of Production Economics 111 (2) (2008) 484-492.
[34] K. S. Shin, T.S. Lee, H.J. Kim, An application of support vector machines in bankruptcy prediction model, Expert Systems with Applications 28 (1) (2005) 127-135.
[35] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, World Scientific Publishing Co Pte Ltd, Singapor (2002).
[36] M. M. Ghiasi, A. Shahdi, P. Barati, M. Arabloo, Robust Modeling Approach for Estimation of Compressibility Factor in Retrograde Gas Condensate Systems, Industrial & Engineering Chemistry Research 53 (32) (2014) 12872-12887.
[37] N. M. Mahmoodi, M. Arabloo, J. Abdi, Laccase immobilized manganese ferrite nanoparticle: Synthesis and LSSVM intelligent modeling of decolorization, Water Research 67 (2014) 216-226.
[38] H. Wang, D. Hu, Comparison of SVM and LS-SVM for regression, In International Conference on Neural Networks and Brain, Beijing, China (2005) 279-283.
[39] S. Sivaprasad, S. Tarafder, V. Ranganath, M. Tarafder, K.J. Ray, Corrosion fatigue crack growth behaviour of naval steels, Corrosion Science 48 (8) (2006) 1996-2013.
[40] M. Arabloo, A. Shokrollahi, F. Gharagheizi, A.H. Mohammadi, Toward a predictive model for estimating dew point pressure in gas condensate systems, Fuel Processing Technology 116 (2013) 317-324.
[41] A. Farasat, A. Shokrollahi, M. Arabloo, F. Gharagheizi, A. H. Mohammadi, Toward an intelligent approach for determination of saturation pressure of crude oil, Fuel Processing Technology 115 (2013) 201-2014.
[42] A. Eslamimanesh, F. Gharagheizi, A.H. Mohammadi, D. Richon, Phase Equilibrium Modeling of Structure H Clathrate Hydrates of Methane + Water “Insoluble” Hydrocarbon Promoter Using QSPR Molecular Approach, J. Journal of Chemical & Engineering Data 56 (10) (2011) 3775-3793.
[43] S. Xavier-de-Souza, J.A. Suykens, J. Vandewalle, D. Bollé, Coupled simulated annealing, IEEE Transactions on Systems, Man, and Cybernetics 40 (2) (2010) 320-335.
[44] H. Masuda, S. Matsuoka, The mechanism of corrosion fatigue crack propagation in structural steels under variable loading, Corrosion Science 30 (6–7) (1990) 631-642.
[45] M. Fonte, S. Stanzl-Tschegg, B. Holper, E. Tschegg, A.K. Vasudevan, The microstructure and environment influence on fatigue crack growth in 7049 aluminum alloy at different load ratios, International Journal of Fatigue 23 (2001) 311-317.