[1] E.A. Basir, K. Narooei, Simulation of Deformation Behavior of Porous Titanium Using Modified Gurson Yield Function, Iran. J. Mater. Form, 3 (2016) 26–38. doi:10.22099/IJMF.2016.3861.
[2] N. Bekoz, E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A, 576 (2013) 82–90. doi:10.1016/j.msea.2013.04.009.
[3] a.-H.H. Benouali, L. Froyen, T. Dillard, S. Forest, F. N’guyen, F. N’Guyen, Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, J. Mater. Sci, 40 (2005) 5801–5811. doi:10.1007/s10853-005-4994-9.
[4] Y. Mu, G. Yao, H. Luo, Effect of cell shape anisotropy on the compressive behavior of closed-cell aluminum foams, Mater. Des, 31 (2010) 1567–1569. doi:10.1016/j.matdes.2009.09.044.
[5] Y. Mu, G. Yao, Anisotropic compressive behavior of closed-cell Al-Si alloy foams, Mater. Sci. Eng. A, 527 (2010) 1117–1119. doi:10.1016/j.msea.2009.09.045.
[6] Y. Mu, G. Yao, H. Luo, Anisotropic damping behavior of closed-cell aluminum foam, Mater. Des, 31 (2010) 610–612. doi:10.1016/j.matdes.2009.06.038.
[7] A. Manonukul, P. Srikudvien, M. Tange, C. Puncreobutr, Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method, Mater. Sci. Eng. 655 (2016) 388–395. doi:10.1016/j.msea.2016.01.017.
[8] M. Mirzaei, M.H. Paydar, Compressive behavior of double-layered functionally graded 316L stainless steel foam, Int. J. Mater. Res, 109 (2018) 938–943. doi:10.3139/146.111689.
[9] M. Mirzaei, M.H. Paydar, A novel process for manufacturing porous 316 L stainless steel with uniform pore distribution, Mater. Des, 121 (2017) 442–449. doi:10.1016/j.matdes.2017.02.069.
[10] L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, Cambridge university press, 1999.
[11] A. Elmoutaouakkil, L. Salvo, E. Maire, G. Peix, 2D and 3D Characterization of Metal Foams Using X-ray Tomography, Adv. Eng. Mater, 4 (2002) 803–807. doi:10.1002/1527-2648(20021014)4: 10<803::AID-ADEM803>3.0.CO;2-D.
[12] K. McCullough, N. Fleck, M. Ashby, Uniaxial stress–strain behaviour of aluminium alloy foams, Acta Mater, 47 (1999) 2323–2330. http://www.sciencedirect.com/science/article/pii/S1359645499001287 (accessed September 7, 2016).
[13] R.K. Desu, H.N. Krishnamurthy, A. Balu, A.K. Gupta, S.K. Singh, Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures, J. Mater. Res. Technol, 5 (2016) 13–20.
[14] I. Standard, INTERNATIONAL STANDARD Mechanical testing of metals - Ductility testing- Compression test for porous and cellular metals, 2011 (2011).
[15] R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th Edition, Wiley, 2012. https://books.google.com/books?id=8d8bAAAAQBAJ.
[16] M. Mirzaei, M.H. Paydar, Fabrication and Characterization of Core–Shell Density-Graded 316L Stainless Steel Porous Structure, J. Mater. Eng. Perform, (2018). doi:10.1007/s11665-018-3797-5.
[17] H. Shen, L.C. Brinson, Finite element modeling of porous titanium, Int. J. Solids Struct, 44 (2007) 320–335. doi:10.1016/j.ijsolstr.2006.04.020.
[18] M. Alizadeh, M. Mirzaei-Aliabadi, Compressive properties and energy absorption behavior of Al–Al2O3 composite foam synthesized by space-holder technique, Mater. Des, 35 (2012) 419–424. doi:10.1016/j. matdes. 2011.09.059.
[19] B. Jiang, N. Zhao, C. Shi, J. Li, Processing of open cell aluminum foams with tailored porous morphology, Scr. Mater, 53 (2005) 781–785. doi:10.1016/j.scriptamat.2005.04.055.