[1] E. Bagherpour, M. Reihanian, N. Pardis, R. Ebrahimi, Ten years of severe plastic deformation (SPD) in Iran, part I: Equal-channel angular pressing (ECAP), Iranian Journal of Materials forming, 5(1) (2018), 71-113.
[2] E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications, The International Journal of Advanced Manufacturing Technology, (2019), 1647-1694.
[3] M. Nouri, H. Mohammadian Semnani, E. Emadoddin, H.S. Kim, Investigation of direct extrusion channel effects on twist extrusion using experimental and finite element analysis, Measurement., (2018), 115-123.
[4] R.Z. Valiev, A. V. Korznikov, A. V., R. R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering A (1993), 141-148.
[5] R.Z. Valiev, V. I. Alexandrov, Nanostructured materials from severe plastic deformation, Nanostructured Materials, (1999) 35-40.
[6] J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques, Journal of Materials Science, (2013) 4653-4660.
[7] R.Z. Valiev., R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, (2000) 103-189.
[8] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baro´, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Materialia, (2003), 753-765.
[9] M. Nouri, H. Mohammadian Semnani, E. Emadoddin, Computational and experimental studies on the effect back pressure on twist extrusion process, Metals and Materials International, (2020).
[10] R.Z. Valiev, Developing SPD methods for processing bulk nanostructured materials with enhanced properties, Metals and Materials International, (2001), 413-420.
[11] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, A.Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals, (2008), 716-735.
[12] J. Zrnik, S.V. Dobatkin, I. Mamuzić, Processing of metals by severe plastic deformation (SPD)-structure and mechanical properties respond, Journal Metalurgija, (2008), 211-216.
[13] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M. J. Zechetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM, (2006), 33-39.
[14] K. Edalati, M. Ashida, Z. Horita, T. Matsui, H. Kato, Wear resistance and tribological features of pure aluminum and Al–Al2O3 composites consolidated by high-pressure torsion, Wear, (2014), 83-89.
[15] Y. Huang, T.G. Langdon, Advances in ultrafine-grained materials, Materials Today, (2013), 85-93.
[16] P. Bazarnik, Y. Huang, M. Lewandowska, T.G. Langdon, Structural impact on the Hall-Petch relationship in an Al–5Mg alloy processed by high-pressure torsion, Materials Science and Engineering A, (2015), 9-15.
[17] S. Ghaemi Khiavi, E. Emadoddin, Microhardness distribution and finite element method analysis of Al 5452 alloy processed by unconstrained high-pressure torsion, Journal of Materials Research and Technology, (2018), 410-418.
[18] A. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science, (2008), 893–979.
[19] I. Balasundar, T. and Raghu, On the die design for Repetitive upsetting - extrusion (RUE) process, International Journal of Material Forming, (2011), 289-301.
[20] Patil, D. C., Kallannavar, V., Bhovi, P. M., Kori, S. A., and Venkateswarlu, K., Finite element analysis of ECAP, TCAP, RUE and CGP processes, IOP Conference Series: Materials Science and Engineering( 2016).
[21] I. Balasundar, T. Raghu, Deformation behaviour of bulk materials during repetitive upsetting-extrusion (RUE), International Journal of Material Forming, (2010), 267-278.
[22] I. Balasundar, T. Raghu, Strain softening in oxygen free high conductivity (OFHC) copper subjected to repetitive upsetting-extrusion (RUE) process, Materials Science and Engineering A, (2013), 114-122.
[23] H. Lianxi, L. Yuping, W. Erde, Y. Yang, Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion, Materials Science and Engineering A, (2006), 327-332.
[24] I. Balasundar, T. Raghu, Investigations on the extrusion defect – Axial hole or funnel, Materials & Design, (2010), 2994-3001.
[25] L. Zaharia, R. Comaneci, R. Chelariu, D. Luca, A new severe plastic deformation method by repetitive extrusion and upsetting, Materials Science and Engineering A, (2014), 135-142.
[26] I. Balasundar, T. Raghu, Severe plastic deformation (SPD) using a combination of upsetting and extrusion, International Journal of Metallurgical Engineering, (2013), 130-139.
[27] B. Binesh, M. Aghaie-Khafri, RUE-based semi-solid processing: Microstructure evolution and effective parameters, Materials & Design, (2016), 268-286.
[28] W. Gao, J. Xu, J. Teng, Z. Lu, Microstructure characteristics and mechanical properties of a 2A66 Al–Li alloy processed by continuous repetitive upsetting and extrusion, Journal of Materials Research and Technology, (2016), 2506–2515.
[29] G. Zhang, Z. Zhang, Y. Du, Z. Yan, X. Che, Effect of isothermal repetitive upsetting extrusion on the microstructure of Mg-12.0Gd-4.5Y-2.0Zn-0.4Zr alloy, Materials, (2018), 2092-2100.