[1] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys, Journal of Science, 312(5770) (2006) 90-91.
[2] R. C. Reed, The superalloys: Fundamentals and applications, Cambridge University Press, 2008, pp. 1-32.
[3] D. Ufukerbulut, I. Lazoglu, Biomaterials for Artificial Organs, Woodhead Publishing, 2011, pp. 10-50.
[4] L.M. Pike, 100 years of wrought alloy development at HAYNES, International Mineral Metallic Materials Society, 15 (2014).
[5] A. I. H. Committee, ASM handbook: Heat treating, ASM International, 1991.
[6] M. Knezevic, J.S. Carpenter, M.L. Lovato, R.J. McCabe, Deformation behavior of the cobalt-based superalloy HAYNES 25: Experimental characterization and crystal plasticity modeling, Acta Materialia, 63 (2014) 162-168.
[7] W.S. Lee, H.C. Kao, High temperature deformation behaviour of HAYNES 188 alloy subjected to high strain rate loading, Materials Science and Engineering: A, 594 (2014) 292-301.
[8] Y.T. Zhu, X.Y. Zhang, H.T. Ni, F. Xu, J. Tu, C. Lou, Formation of {112¯1} twins in polycrystalline cobalt during dynamic plastic deformation, Materials Science and Engineering A, 548 (2012) 1-5.
[9] M.L. Benson, P.K. Liaw, T.A. Saleh, H. Choo, D.W. Brown, M.R. Daymond, E.W. Huang, X.L. Wang, A.D. Stoica, R.A. Buchanan, D.L. Klarstrom, Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation, Physica B: Condensed Matter, 385 (2006) 523-525.
[10] F. Fellah, G. Dirras, J. Gubicza, F. Schoenstein, N. Jouini, S.M. Cherif, C. Gatel, J. Douin, Microstructure and mechanical properties of ultrafine-grained fcc/hcp cobalt processed by a bottom-up approach, Journal of Alloys and Compounds, 489(2) (2010) 424-428.
[11] M.L. Benson, P.K. Liaw, H. Choo, D.W. Brown, M.R. Daymond, D.L. Klarstrom, Strain-induced phase transformation in a cobalt-based superalloy during different loading modes, Materials Science and Engineering: A, 528 (2011) 6051-6058.
[12] J. Favre, D. Fabrègue, E. Maire, A. Chiba, Grain growth and static recrystallization kinetics in Co–20Cr–15W–10Ni (L-605) cobalt-base superalloy, Philosophical Magazine, 94(18) (2014) 1992-2008.
[13] HAYNES® 25 Alloy, in: H.I. Inc. (Ed.) Heat resistance alloys at a glance, HAYNES INTERNATIONAL Inc., Kokomo, Indiana USA, 2008.
[14] J.R. Davis, A.S.M.I.H. Committee, Nickel, Cobalt, and their alloys, ASM International, 2000.
[15] A.S. Kurlov, A.I. Gusev, Tungsten carbides: Structure, properties and application in hardmetals, Springer, 2013.
[16] T. Liu, J.S. Dong, L. Wang, Z.J. Li, X.T. Zhou, L.H. Lou, J. Zhang, Effect of long-term thermal exposure on microstructure and stress rupture properties of GH3535 superalloy, Journal of Materials Science Technology, 31(3) (2015) 269-279.
[17] J. Teague, E. Cerreta, M. Stout, Tensile properties and microstructure of HAYNES 25 alloy after aging at elevated temperatures for extended times, Metallurgical and Materials Transaction A, 35(9) (2004) 2767-2781.
[18] J. Favre, Recrystallization of L-605 cobalt superalloy during hot-working process, PhD diss., Lyon, INSA, 2012, pp. 239.
[19] S. Mandal, A.K. Bhaduri, V.S. Sarma, Origin and role of Σ3 boundaries during thermo-mechanical processing of a Ti-modified austenitic stainless steel, Materials Science Forum, 702 (2012) 714-717.
[20] F.J. Humphreys, M. Hatherly, Chapter 13-Hot deformation and dynamic restoration, in: F.J.H. Hatherly (Ed.) Recrystallization and Related Annealing Phenomena (Second Edition), Elsevier, Oxford, 2004, pp. 415-420.
[21] B. Paul, R. Kapoor, J.K. Chakravartty, A.C. Bidaye, I.G. Sharma, A.K. Suri, Hot working characteristics of cobalt in the temperature range 600–950°C, Scripta Materialia, 60(2) (2009) 104-107.
[22] J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, J.T. Wang, Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium, Scripta Materialia, 69(5) (2013) 428-431.
[23] Y.T. Zhu, X.Z. Liao, X.L. Wu, J. Narayan, Grain size effect on deformation twinning and detwinning, Journal of Materials Science, 48(13) (2013) 4467–4475.
[24] R.K. Gupta, M.K. Karthikeyan, D.N. Bhalia, B.R. Ghosh, P.P. Sinha, Effect of microstructure on mechanical properties of refractory Co-Cr-W-Ni alloy, Metals Science and Heat Treatment, 50(3) (2008) 175-179.
[25] S. Zangeneh, H. Farhangi, Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle, Materials and Design, 31(7) (2010) 3504-3511.
[26] J.H. Shin, J.W. Lee, Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steel, Materials Characterization, 91 (2014) 19-25.
[27] F.J. Humphreys, M. Hatherly, Chapter 2-The deformed state, in: F.J.H. Hatherly (Ed.) Recrystallization and Related Annealing Phenomena (Second Edition), Elsevier, Oxford, 2004, pp. 11-12.
[28] Committee AIH, ASM Handbook: Fractography, ASM International, 1987.
[29] T. Osada, N. Nagashima, Y. Gu, Y. Yuan, T. Yokokawa, H. Harada, Factors contributing to the strength of a polycrystalline nickel–cobalt base superalloy, Scripta Materialia, 64(9) (2011) 892-895.