[1] H. Ataei, M. Shahbaz, H.S. Kim, N. Pardis, Finite element analysis of severe plastic deformation by rectangular vortex extrusion, Metals and Materials International, 27 (2021) 676-682.
[2] M. Shahbaz, N. Pardis, R. Ebrahimi, B. Talebanpour, A novel single pass severe plastic deformation technique: vortex extrusion, Materials Science and Engineering: A, 530 (2011) 469-472.
[3] M. Shahbaz, N. Pardis, J.G. Kim, R. Ebrahimi, H.S. Kim, Experimental and finite element analyses of plastic deformation behavior in vortex extrusion, Materials Science and Engineering: A, 674 (2016) 472-479.
[4] M. Shahbaz, N. Pardis, J. Moon, R. Ebrahimi, H.S. Kim, Microstructural and mechanical properties of a material processed by streamline proposed vortex extrusion die, Metals and Materials International, 27(3) (2021) 522-529.
[5] Y. Beygelzimer, D. Orlov, A. Korshunov, S. Synkov, V. Varyukhin, I. Vedernikova, A. Reshetov, A. Synkov, L. Polyakov, I. Korotchenkova, Features of twist extrusion: method, structures & material properties, Solid State Phenomena, 114 (2006) 69-78.
[6] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Materials Science and Engineering: A, 503(1-2) (2009) 14-17.
[7] D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, Z. Horita, Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion, Materials Science and Engineering: A, 519(1-2) (2009) 105-111.
[8] M. I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, H.S. Kim, Finite element analysis of plastic deformation in twist extrusion, Computational Materials Science, 60 (2012) 194-200.
[9] E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications, The International Journal of Advanced Manufacturing Technology, 100(5-8) (2019) 1647-1694.
[10] E. Bagherpour, M. Reihanian, N. Pardis, R. Ebrahimi, T. Langdon, Ten years of severe plastic deformation (SPD) in Iran, part I: equal-channel angular pressing (ECAP), Iranian Journal of Materials Forming, 5(1) (2018) 71-113.
[11] S.A. Asghar, A. Mousavi, S.R. Bahador, Investigation and numerical analysis of strain distribution in the twist extrusion of pure aluminum, JOM, 63(2) (2011) 69-76.
[12] U.M. Iqbal, V.S. Senthil Kumar, Modeling of twist extrusion process parameters of AA6082-T6 alloy by response surface approach, Journal of Engineering Manufacture, 228(11) (2014) 1458-1468.
[13] M.I. Latypov, M.G. Lee, Y. Beygelzimer, D. Prilepo, Y. Gusar, H.S. Kim, Modeling and characterization of texture evolution in twist extrusion, Metallurgical and Materials Transactions A, 47(3) (2016) 1248-1260.
[14] F. Javadzadeh Kalahroudi, A.R. Eviani, H.R. Jafarian, A. Amouri, R. Gholizadeh, Inhomogeneity in strain, microstructure and mechanical properties of AA1050 alloy during twist extrusion, Materials Science and Engineering: A, 667 (2016) 349-357.
[15] G. Ranjbari, A. Doniavi, M. Shahbaz, Analysis of strain inhomogeneity in vortex extrusion using finite element method and response surface methodology, Iranian Journal of Materials Forming, 7 (2) (2020) 26-31.
[16] S.V. Noor, A.R. Eivani, H.R. Jafarian, M. Mirzaei, Inhomogeneity in microstructure and mechanical properties during twist extrusion, Materials Science and Engineering: A, 652 (2016) 186-191.
[17] Design Expert 11, Stat-Ease, Inc.
[18] CATIA v5R21, Dassault systems corporation.
[19] DEFORM-3D V11, Scientific Forming Technologies Corporation (SFTC).
[20] G. Ranjbari, A. Doniavi, M. Shahbaz, Numerical modelling and simulation of vortex extrusion as a severe plastic deformation technique using response surface methodology and finite element analysis, Metals and Materials International, (2020).
[21] G. Ranjbari, A. Doniavi, M. Shahbaz, R. Ebrahimi, Effect of processing parameters on the strain inhomogeneity and processing load in vortex extrusion of Al–Mg–Si alloy, Metals and Materials International, 27 (2021) 683–690.