[1] R. Feng, C. Zhang, M.C. Gao, Z. Pei, F. Zhang, Y. Chen, D. Ma, K. An, J.D. Poplawsky, L. Ouyang, Y. Ren, High-throughput design of high-performance lightweight high-entropy alloys, Nature Communications, 12(1) (2021) 1-10.
[2] Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, S. Jiang, Short-range ordering and its effects on mechanical properties of high-entropy alloys, Journal of Materials Science & Technology, 62 (2021) 214-220.
[3] M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, N. Stepanov, Effect of carbon on recrystallised microstructures and properties of CoCrFeMnNi-type high-entropy alloys, Journal of Alloys and Compounds, 851 (2021) 156839.
[4] Q.F. He, P.H. Tang, H.A. Chen, S. Lan, J.G. Wang, J.H. Luan, M. Du, Y. Liu, C.T. Liu, C.W. Pao, Y. Yang, Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys, Acta Materialia, 216 (2021) 117140.
[5] R. Gawel, Ł. Rogal, J. Dąbek, M. Wójcik-Bania, K. Przybylski, High temperature oxidation behaviour of non-equimolar AlCoCrFeNi high entropy alloys, Vacuum, 184 (2021) 109969.
[6] R.K. Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13) 100-xMox high-entropy alloys via secondary phase control, Journal of Materials Science & Technology, 73 (2021) 210-217.
[7] H.C. Liu, C.W. Tsai. Effect of Ge addition on the microstructure, mechanical properties, and corrosion behavior of CoCrFeNi high-entropy alloys, Intermetallics, 132 (2021) 107167.
[8] P.P. Cao, H. Wang, J.Y. He, C. Xu, S.H. Jiang, J.L. Du, X.Z. Cao, E.G. Fu, Z.P. Lu, Effects of nanosized precipitates on irradiation behavior of CoCrFeNi high entropy alloys, Journal of Alloys and Compounds, 859 (2021) 158291.
[9] İ.B.A. Şimşek, M.N. Arık, Ş. Talaş, A. Kurt, The effect of B addition on the microstructural and mechanical properties of FeNiCoCrCu high entropy alloys, Metallurgical and Materials Transactions A, 52(5) (2021) 1749-1758.
[10] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218.
[11] S.J. Sun, Y.Z. Tian, X.H. An, H.R. Lin, J.W. Wang, Z.F. Zhang, Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure, Materials Today Nano, 4 (2018) 46-53.
[12] S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy, Materials Science and Engineering: A, 689 (2017) 122-133.
[13] C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, W.L. Mao, High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi, Nature communications, 8(1) (2017) 1-6.
[14] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(6201) (2014) 1153-1158.
[15] Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nature communications, 6(1) (2015) 1-6.
[16] S.W. Lee, Y. Cheng, I. Ryu, J.R. Greer, Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments, Science China Technological Sciences, 57(4) (2014) 652-662.
[17] I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, I.V. Kuksgausen, I. Karaman, Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy, Materials Science and Engineering: A, 705 (2017) 176-181.
[18] M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George, Plastic deformation of single crystals of the equiatomic Cr− Mn− Fe− Co− Ni high-entropy alloy in tension and compression from 10 K to 1273 K, Acta Materialia, 203 (2021) 116454.
[19] O.R. Deluigi, R.C. Pasianot, F.J. Valencia, A. Caro, D. Farkas, E.M. Bringa, Simulations of primary damage in a High Entropy Alloy: Probing enhanced radiation resistance, Acta Materialia, 213 (2021) 116951.
[20] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, LAMMPS-A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 271 (2022) 108171.
[21] W.M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, B.J. Lee, Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study, npj Computational Materials, 4(1) (2018) 1-9.
[22] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18(1) (2009) 015012.
[23] M. Kawamura, M. Asakura, N.L. Okamoto, K. Kishida, H. Inui, E.P. George, Plastic deformation of single crystals of the equiatomic Cr− Mn− Fe− Co− Ni high-entropy alloy in tension and compression from 10 K to 1273 K, Acta Materialia, 203 (2021) 116454.
[24] N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy, Intermetallics, 59 (2015) 8-17.
[25] S. Zhao, Z. Li, C. Zhu, W. Yang, Z. Zhang, D.E. Armstrong, P.S. Grant, R.O. Ritchie, M.A. Meyers, Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy, Science advances, 7(5) (2021) eabb3108.
[26] P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformations, solid state physics, 52 (1999) 1-35.
[27] R.V. Sundeev, A.M. Glezer, A.V. Shalimova, Phase transformations «Amorphization↔ Crystallization» in metallic materials induced by severe plastic deformation, Reviews on advanced materials science, 54(1) (2018) 93-105.
[28] S. Zhao, R. Flanagan, E.N. Hahn, B. Kad, B.A. Remington, C.E. Wehrenberg, R. Cauble, K. More, M.A. Meyers, Shock-induced amorphization in silicon carbide, Acta Materialia, 158 (2018) 206-213.