[1] N. Baluch, Z.M. Udin, C.S. Abdullah, Advanced high strength steel in Auton industries: an Overview, Engineering, Technology & Applied Science Research, 4(4) (2014) 686-689.
[2] K. Mukherjee, S. Hazra, M. Militzer, Grain refinement in dual-phase steels, Metallurgical and Materials Transactions A, 40(9) (2009) 2145-2159.
[3] W. Bleck, A. Frehn, J. Ohlert, Niobium in dual phase and trip steels, International Symposium on Niobium, Proceedings. Niobium, 2001, 727-752.
[4] F.R. Xiao, Y.B. Cao, G.Y. Qiao, X.B. Zhang, L.I.A.O. Bo, Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels, Journal of. Iron and Steel Research, International, 19(11) (2012) 52-56.
[5] J.C. Cao, Q.Y. Liu, Q.L. Yong, X.J. Sun, Effect of niobium on isothermal transformation of austenite to ferrite in HSLA low- carbon steel, Journal of. Iron and Steel Research, International, 14(3) (2007) 52-56.
[6] H. Niakan, A. Najafizadeh, Effect of niobium and rolling parameters on the mechanical properties and microstructure of dual phase steels, Materials Science and Engineering: A, 527(21-22) (2010) 5410-5414.
[7] J. Lee, S.J. Lee, B.C. De Cooman, Effect of micro-alloying elements on the stretch-flangeability of dual phase steel, Materials Science and Engineering: A, 536 (2012) 231-238.
[8] A. Ghatei Kalashami, A. Kermanpur, A. Najafizadeh, Y. Mazaheri, Effect of Nb on microstructures and mechanical properties of an ultrafine-grained dual phase steel, Journal of Materials Engineering and Performance, 24(8) (2015) 3008-3017.
[9] D. Samantaray, S. Mandal, A.K. Bhaduri, A comparative study on Johnson-Cook, modified Zerilli Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel, Computational Materials Science, 47(2) (2009) 568-576.
[10] X. Qin, D. Huang, X. Yan, X. Zhang, M. Qi, S. Yue, Hot deformation behaviors and optimization of processing parameters for Alloy 602 CA, Journal of Alloys and Compounds, 770 (2019) 507-516.
[11] M. Rakhshkhorshid, N. Mollayi, A.R. Maldar, A SVM model to predict the hot deformation flow curves of AZ91 magnesium alloy, Iranian Journal of Materials Forming. 4(2) (2017) 15-24.
[12] F. Yin, L. Hua, H. Mao, X. Han, Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments, Materials & Design, 43 (2013) 393-401.
[13] R. Ebrahimi, A. Najafizadeh, A new method for evaluation of friction in bulk metal forming, Journal of Materials Processing Technology, 152(2) (2004) 136-143.
[14] R.L. Goetz, S.L. Semiatin, The adiabatic correction factor for deformation heating during the uniaxial compression test, Journal of Materials Engineering and Performance, 10(6) (2001) 710-717.
[15] E.I. Poliak, J.J. Jonas, Initiation of dynamic recrystallization in constant strain rate hot deformation, ISIJ International, 43(5) (2003) 684- 691.
[16] E.I. Poliak, and J. J.Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Materialia, 44(1) (1996) 127-136.
[17] A. Najafizadeh, J.J. Jonas, Predicting of the critical stress for initiation of dynamic recrystallization, ISIJ International, 46(11) (2006) 1679-1684.
[18] H. Mirzadeh, A. Najafizade, Extrapolation of flow curves at hot working conditions, Materials Science and Engineering: A, 572(7-8) (2010) 1856-1860.
[19] H.J. McQueen, N.D. Ryan, Constitutive analysis in hot working, Materials Science and Engineering: A, 322(1-2) (2002) 43-63.
[20] H. Mirzadeh, A simplified approach for developing constitutive equations for modeling and prediction of hot deformation flow stress, Metallurgical and Materials Transactions A, 46(9) (2015) 4027-4037.
[21] A. Saboori, A. Abdi, S.A. Fatemi, G. Marchese, S. Biamino, H. Mirzadeh, Hot deformation behavior and flow stress modeling of Ti-6Al-4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field, Journal of Materials Science & Engineering A, 792 (2020) 139822.
[22] Y.C. Lin, M.S. Chen, J. Zhong, Constitutive modeling for elevated temperature flow behavior of 42CrMo steel, Computational Materials Science, 42(3) (2008) 470-477.