[1] R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer, Y. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Materials Research Letters, 4 (2016) 1-21.
[2] W. Jiang, H. Cui, Y. Song, Electrochemical corrosion behaviors of titanium covered by various TiO2 nanotube films in artificial saliva, J. Mater. Sci, 53 (2018).
[3] M. Kaur, K. Singh, Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications, Mater. Sci. Eng. C, 102 (2019) 844-853.
[4] Y. Chehrehsaz, K. Hajizadeh, A. Hajizadeh, L. Moradi, S. Mahshid, Effect of ECAP on Physicochemical and Biological Properties of TiO2 Nanotubes Anodized on Commercially Pure Titanium, Metals and Materials International, 4 (2021) 67-78.
[5] M. Aghaei. Khafri, N. Golarzi, Dynamic and metadyanamic recrystallization of hastelloy X superalloy, journal of materials science, 43 (2008) 3717-3724.
[6] K. Indira, U.K. Mudali, T. Nishimura, N. Rajendran, A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications, J. Bio. Tribo. Corros, 3 (2015) 1-28.
[7] S. Ahmadi, V. Alimirzaloo, G. Faraji, A. Donyavi, A New Modified Cyclic Extrusion Channel Angular Pressing (CECAP) Process for Producing Ultrafine-Grained Mg Alloy, Trans Indian Inst Met, 73 (10) (2020) 2447-2456.
[8] K. Hajizadeh, B. Eghbali, Effect of Two-Step Severe Plastic Deformation on the Microstructure and Mechanical Properties of Commercial Purity Titanium, Met. Mater. Int, 20 (2014) 343-350.
[9] M. W. Richert, Features of Cyclic Extrusion Compression: Method, Structure & Materials Properties, Solid State Phenomena, 114 (2006) 19-28.
[10] N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic-compression (CEC), Mater. Sci. Eng. A, 528 (2011) 7537-7540.
[11] S. Amani, G. Faraji, K. Abrinia, Microstructure and hardness inhomogeneity of fine grain AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE), journal of manufacturing processes, 28 (2017) 197-208.
[12] M. Kawasaki, T. G. Langdon, Superplasticity in ultrafine-grained materials, Rev. Adv. Mater. Sci. 54 (2018) 46-55.
[13] J. Zhang, K. S. Zhang, W. Hwai-Chung, M. H. Yu, Experimental and numerical investigation on pure aluminium by ECAP, Trans. Nonferr. Met. Soc. China, 19(5) (2009) 1303-1311.
[14] B.V. Patil, U. Chakkingal, T. P. Kumar, Influence of outer radius in equal channel angular pressing, World Academy of Science Engineering and Technology, 62 (2010) 714-720.
[15] M. Ensafi, G. Faraji, H. Abdolvand, Cyclic extrusion compression angular pressing (CECAP) as a novel sever plastic deformation method for producing bulk ultrafine grained metals, Materials Letters, 197 (2017) 12-16.
[16] S. Ahmadi, G. Faraji, V. Alimirzaloo, A. Donyavi, Microstructure and Mechanical Properties of AM60 Magnesium Alloy Processed by a New Severe Plastic Deformation Technique, Metals and Materials International, 27 (2021) 2957-2967.
[17] K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region, Materials Chemistry and Physics, 143 (3) (2014) 1032-1038.
[18] T. Altan, Cold and Hot Forging, American Society for Metals, 50-53 (2004).
[19] H. Ataei1, M. Shahbaz, H. S. Kim, N. Pardis, Numerical Analysis of Plastic Strain Inhomogeneity in Rectangular Vortex Extrusion (RVE) Process, Iranian Journal of Materials Forming, 8(3) (2021) 46-52.
[20] M. Shahbaz, N. Pardis, J. G. Kim, R. Ebrahimi, H. S. Kim, Experimental and finite element analyses of plastic deformation behavior in vortex extrusion, Materials Science and Engineering A, 674 (2016) 472-47.
[21] Y. Iwahashi, J. T. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Principle of equal channel angular pressing for the processing of ultra-fine-grained materials, Scripta Materialia, 35 (1996) 143-146.
[22] Q. Ge. D. Dellasega, A. G. Demir, M. Vedani, The processing of ultrafine-grained Mg tube for biodegradable stents, Acta Biomaterialia, 9 (2013) 8604-8610.