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Despite the definition of failure being almost thoroughly studied in other theories such as 

elasto-plasticity, this paper studies the possibility of capturing or defining some limit states 

in hypoelastic materials. It is shown that for many hypoelastic materials the limit state, as 

a notion of failure, can take the place of the yield or failure in classical plasticity. The 

procedure is general, and all equations are rational, i.e. they are not dependent on a 

particular form of a constitutive equation. Constitutive equations cover those applied to 

both metallic and non-metallic materials. Some practical results were obtained for a 

particular form of a hypoelastic equation which resembles the Drucker-Prager criterion 

for the form of the limit state. Results were also examined against a set of experimental 

data. 
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1. Introduction 

In the context of the classical plasticity theory, the yield is 

often defined as the boundary separating the elastic region 

from the inelastic one. In one dimension, in particular in 

metals, the yield point may be very sharp (e.g. in mild 

steel) or smooth (e.g. in aluminum). This is also the case in 

granular materials [1, 2]. Although the definition of yield 

is often accurate, the definition of failure (or rupture) is, to 

some extent, arbitrary. In contrast to perfectly plastic 
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materials, where the yield and failure are identical, in 

hardening materials, there is no accurate definition of 

failure. In general, the failure is highly dependent on the 

interpretation of the examiner [3, 4]. Locally, it sometimes 

means the stress tensor remains stationary, and hence, its 

material derivative vanishes. This is called the limit state 

in the context of solid mechanics and is widely used in 

geomechanics (e.g. [5-7]). 

Even though in the theory of plasticity, a system of 
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independent equations is required in cases such as that 

of elastic behavior, yield criterion, hardening, and flow 

rule among others, in the fairly novel theory of 

hypoelasticity, there is only one constitutive equation 

governing the material behavior. This theory, originally 

developed in the mid-1900s, has been successfully 

developed by both hypoelasticity and hypoplasticity, to 

predict the behavior of solids including metals and 

geomaterials [8-16].  

It has been long a question whether the hypoelastic 

constitutive equations, or in general, hypo-materials, can 

predict or capture a limit state. Research in this area [10, 

16, 17-19] is to some extent very limited making it an 

open research area.  

In this research, the ability of hypoelastic constitutive 

equations in terms of predicting the limit state is studied. 

The form of the hypoelastic equation is arbitrary but 

examples are provided for some simple forms. In 

addition, the use of an objective stress rate in the 

definition of the hypoelastic constitutive equation has 

been made and results can be applied to finite (also 

called large) deformation analysis, widely applied in 

practice [20]. The novelty of the work may fall into 

presenting a simple hypoelastic constitutive equation 

which is equivalent to elasto-plastic models also 

approaching a limit state with a form corresponding to 

the Drucker-Prager criterion. In addition, two possible 

alternatives to define the limit state were presented and 

compared. 

 

2. Theory of Hypoelastic Materials 
 

A hypoelastic material is a sub-class of materials of the 

rate type [21]. This is defined as one with a linear 

functional dependence of some objective stress rate on 

the rate of deformation tensor [9]. The general form of 

the hypoelastic constitutive equation is as follows: 

 
𝑻∎ = 𝒉(𝑻,𝑫, 𝜌) = ℂℎ𝑒: 𝑫, ℂℎ𝑒 = ℂℎ𝑒(𝑻, 𝜌) 

 
) 

where 𝑻∎ is an objective stress rate, 𝒉 is the 

hypoelasticity function, 𝑻 is the stress tensor, 𝑫 is the 

rate of deformation tensor, 𝜌 is the density and ℂℎ𝑒 is the 

4th order hypoelastic constitutive tensor.  

The most general form of the hypoelastic constitutive 

equation with 𝑏𝑖’s being functions of the invariants of 

the stress tensor is as follows [9]:  

𝑻∎ = 𝑏1𝑫+ 𝑏2(𝑻𝑫 + 𝑫𝑻) + 𝑏3(𝑻
2𝑫+ 𝑫𝑻2) + [𝑏4tr𝑫 +

𝑏5tr(𝑻𝑫) + 𝑏6tr(𝑻
2𝑫)]𝑰 + [𝑏7tr𝑫 + 𝑏8tr(𝑻𝑫) +

𝑏9tr(𝑻
2𝑫)]𝑻 + [𝑏10tr𝑫 + 𝑏11tr(𝑻𝑫) + 𝑏12tr(𝑻

2𝑫)]𝑻2   

This equation can take simpler forms by physical 

constraints and requirements stemmed from physical 

observations. For instance, by keeping only 𝑏1 and 𝑏4 

and letting the rest of constants vanish, the following 

form is reduced to the generalized Hooke’s law in linear 

elasticity by application of infinitesimal deformation: 

 

𝑻∎ = 𝑏4(tr𝑫)𝑰 + 𝑏1𝑫 = 𝜆(tr𝑫)𝑰 + 2𝜇𝑫  

 

where 𝜆 = 𝑏4 and 2𝜇 = 𝑏1 are Lamé constants.  

If one makes the approximation 𝑫 ≅ 𝜺̇ for 

infinitesimal deformations and hence, 𝑻∎ ≅ 𝑻̇, the 

equation will be exactly the generalized form of Hooke’s 

law in the rate form. This equation is linear but may 

exhibit a nonlinear material behavior. In addition, based 

on the chosen objective, stress rate in place of 𝑻∎ 

different behaviors may be observed, e.g. an oscillatory 

behavior for the famous Jaumann-Zaremba-Noll 

(Jaumann) stress rate. Fig. 1 shows three different 

responses of such materials under a simple shear motion, 

with dilation, under the Jaumann, Oldroyd and Truesdell 

objective stress rates for 𝜆 = 𝜇 = 1 and 𝑝0 is the initial 

value of tr𝑻/3. The oscillatory behavior does not 

necessitate a periodic behavior, other than in the case of 

pure shear deformation (with no dilation), as a special case, 

where the response is both oscillatory and periodic. A 

detailed discussion can be found in the literature (e.g. [1]). 

One should note that the hypoelasticity equation can 

be regarded as a linear transformation (or operator) from 

the space of all 2nd order tensors into itself, i.e. 𝒉: 𝑆 → 𝑆 

where 𝑆(= ℝ3 × ℝ3) is the vector space corresponding 

to all [symmetric] 2nd order tensors. Therefore, ℂℎ𝑒 can 

be represented by the matrix of this transformation 

which will later be used.  

 

3. The Limit State 
 

Analogous to the definition of failure (or yield, in 

perfectly plastic materials) the limit state can be defined  

(1) 

(3) 

(2) 
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Fig. 1. Material response to the simple shear motion with 

different objective stress rates; (a) simple shear motion field, 

(b) stress-strain curve. 

 

as the state in which the stress tensor becomes constant. 

It means the material derivative of 𝑻 vanishes. This is 

the dynamical condition of the limit state. In addition, 

the kinematical condition is often prescribed to define 

the limit state. It defines it as a state where only shear 

deformation takes place and the volume remains constant. 

Thus, the kinematical condition is tr𝑫 = div𝒗 = 0. 

The first condition is sometimes simplified as 𝑻∎ = 𝟎. 

However, 𝑻̇ = 𝟎 does not necessitate that 𝑻∎ = 𝟎. An 

important study conducted by [22] indicated that the 

assumption of 𝑻∎ = 𝟎 often leads to 𝑻̇ = 𝟎 for a series 

of hypoplastic constitutive equations, although it is still 

debatable. This may also be true for hypoelastic 

materials, with simpler constitutive equations. It seems 

that within the practical range of deformations under 

infinitesimal or no vorticity (e.g. in proportional loading) 

at the limit state, the difference between 𝑻∎ and 𝑻̇  is 

negligible, assuming 𝑻∎ = 𝟎 valid for practical 

purposes. Therefore, one approach to check whether the 

limit state can be reached is to check whether 𝑻̇ = 𝟎 may 

give a meaningful equation for the stress tensor. The 

second condition, i.e. the kinematical condition, depends 

on experimental observations and may or may not be 

applicable. One should note that a meaningful equation 

is one where the stress tensor, 𝑻, satisfies rigor 

constraints, i.e. it is real (all eigenvalues or principal 

stresses are real) and delineates a well-defined boundary 

in the stress space with clearly observable inside and 

outside regions. For such a limit state, the stress paths 

can be traced to see if they eventually approach or reach 

this boundary, noting that, stresses beyond it (or outside 

this region) will be impossible to reach. One unnecessary 

condition can be the convexity of the limit state surface 

which is required by the classical theory of plasticity for 

the purpose of creating consistency with conventional 

yield/failure surfaces.  

Now, the question is that under what condition(s) 

may 𝑻∎ (or 𝑻̇) vanish? An immediate answer is that the 

vanishing of 𝑻∎, for example, requires the vanishing of 

ℂℎ𝑒. However, in the context of linear algebra, assuming 

that the form of the hypoelastic constitutive equation is 

a linear operator, the vanishing of 𝑻∎ corresponds to a 

homogeneous system of linear algebraic equations in 𝑻. 

Therefore, 𝑻∎ = ℂℎ𝑒: 𝑫 = 𝟎 corresponds to conditions 

on ℂℎ𝑒 such that the kernel of the linear operator 

becomes non-empty. In other words, the question will be 

under what conditions on 𝑻 will the kernel of ℂℎ𝑒 

become non-empty? This is equivalent to saying that 

under some stress states, the stress rate vanishes for a set 

of motions (𝑫). This approach was also put forth by [10] 

and here, we try to extend it in order to study the forms 

of the limit states obtained by the hypoelastic 

constitutive equations. To do so, we first examine and 

compare the two different approaches for a linear 

hypoelastic constitutive equation. Since the approach is 

general and does not depend on any specific form of a 

constitutive equation, we employ a simple form of the 

constitutive equation given below: 

(b) 

𝑿, 𝒙 

𝜃 

𝛾 = tan𝜃 

(a) 
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 𝑻∎ = 𝑐0(tr𝑻)(tr𝑫)𝑰 + 𝑐1(tr𝑻)𝑫 +
𝑐2tr(𝑻𝑫)𝑻

tr𝑻
 

The reason for this choice is that the first two terms 

correspond to the famous equation of the generalized 

Hooke’s law, with a slight difference. The difference lies 

in the constants which are now functions of the isotropic 

stress, i.e. 𝜆 = 𝑐0(tr𝑻) and 2𝜇 = 𝑐1(tr𝑻). This 

dependence is advantageous in porous and granular 

materials where the behavior is pressure-dependent and 

the stiffness increases with the confining pressure. The 

third term contains tr(𝑻𝑫) which is a measure of the rate 

of the stress work. In the theory of plasticity, this 

quantity often serves as a measure of hardening and the 

third term can be assumed to be a decaying term causing 

the material stiffness to decrease. In one-dimension 

cases, it causes the stress to gradually decrease in a 

monotonically increasing deformation (but in higher 

dimensions, increase or decrease for the stress tensor is 

meaningless, hence, leading to the use of the word 

stiffness to convey the meaning). In the present work, the 

necessity of the limit state by both the first and second 

approaches is investigated and discussed.  

 

4. The Limit State by the First Approach 
 

In the first approach, we require the constitutive tensor, 

ℂℎ𝑒, to vanish. The dynamical condition, which is 

mandatory, as well as the kinematical condition, which 

is arbitrary, are studied. 

 

4.1. Dynamical condition 
 

𝑻∎ = ℂℎ𝑒: 𝑫 = 𝟎, 𝑫 ≠ 𝟎   requires   ℂℎ𝑒 = 𝟎         (5a) 

ℂ𝑖𝑗𝑘𝑙
ℎ𝑒 = [𝑐0𝑡𝑚𝑚𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑐1𝑡𝑚𝑚𝛿𝑖𝑘𝛿𝑗𝑙 +

𝑐2𝑡𝑖𝑗𝑡𝑘𝑙

𝑡𝑚𝑚
] = 0 

In these equations, 𝑡𝑖𝑗 are components of the stress 

tensor, 𝛿𝑖𝑗 are components of the isotropic tensor of the 

2nd order which is often called the Kronecker delta and 

ℂ𝑖𝑗𝑘𝑙
ℎ𝑒  are components of the 4th order hypoelastic 

constitutive tensor. Thus: 

(𝑐0𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑐1𝛿𝑖𝑘𝛿𝑗𝑙)𝑡𝑚𝑚 +
𝑐2𝑡𝑖𝑗𝑡𝑘𝑙

𝑡𝑚𝑚
= 0      

By making two contractions on 𝑖 = 𝑘 and 𝑗 = 𝑙 the 

equation takes the form: 

(𝑐0𝛿𝑖𝑗𝛿𝑖𝑗 + 𝑐1𝛿𝑖𝑖𝛿𝑗𝑗)𝑡𝑚𝑚 +
𝑐2𝑡𝑖𝑗𝑡𝑖𝑗

𝑡𝑚𝑚
= 0 

Thus, the equation of the limit state under the sole 

dynamical condition is as follows: 

(3𝑐0 + 9𝑐1)𝑡𝑚𝑚 +
𝑐2𝑡𝑖𝑗𝑡𝑖𝑗

𝑡𝑚𝑚
= 0 

tr𝑻2 + 𝑐(tr𝑻)2 = 0    or   (1 + 𝑐)𝐼1
2 − 2𝐼2 = 0,   

𝑐 =
(3𝑐0 + 9𝑐1)

𝑐2
 

𝐽2 + 𝜅
2𝐼1
2 = 0,   𝜅2 = −

(1 + 3𝑐)

6
,   𝑐 < −

1

3
 

In these equations, 𝐼1 and 𝐼2 are the first and second 

invariants of the stress tensor, respectively, while 𝐽2 is 

the second invariant of the deviatoric stress tensor.  

The equation of the limit state surface corresponds to 

a circular cone in 𝜎1 − 𝜎2 − 𝜎3 stress space (or the 

Haigh-Westergaard space) which resembles the 

Drucker-Prager yield/failure surface with an elliptical 

cross-section in 𝜎2 − 𝜎3 plane. Fig. 2 shows the form of 

this limit state surface in its stress space and a cross-

section. If the state of failure is known, e.g. from the 

experimental results, the remaining two constants, e.g. 

𝑐0 and 𝑐1 can be found by making measurements on the 

elastic branches of the stress-strain curves. This is 

similar to how the elastic constants in a linear elastic 

material are determined. One should also note that this is 

a necessary condition for the limit state to be reached. 

 

4.2. Kinematical condition 
 

If one wishes to impose the second condition (the 

kinematical condition, i.e. tr𝑫 = 0), it requires: 

𝑻∎ = 𝑐0(𝑡𝑟𝑻)(𝑡𝑟𝑫)𝑰 + 𝑐1(𝑡𝑟𝑻)𝑫 +
𝑐2𝑡𝑟(𝑻𝑫)𝑻

𝑡𝑟𝑻
 

= 0 + 𝑐1(tr𝑻)𝑫 +
𝑐2tr(𝑻𝑫)𝑻

tr𝑻
= 𝟎 

Thus: 

𝑐1𝛿𝑖𝑘𝛿𝑗𝑙𝑡𝑚𝑚 +
𝑐2𝑡𝑖𝑗𝑡𝑘𝑙

𝑡𝑚𝑚
= 0 

By making a double contraction on 𝑖 and 𝑗 also on 𝑘 

and 𝑙 i.e. by setting 𝑖 = 𝑗 and 𝑘 = 𝑙: 
 

3𝑐1 + 𝑐2 = 0     ⟹       𝑐2 = −3𝑐1 

(5c) 

(6a) 

(7b) 

(7a) 

(6c)  

(6b) 

(5b) 

(5d) (4) 

(7c) 
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Fig. 2. The limit state surface conical form in (a) the principal 

stress space and (b) its elliptical projection on the 𝜎2 − 𝜎3 

plane keeping 𝐼1 = 1. 

 

This will reduce the number of independent 

constants to two making only two tests sufficient for the 

full prescription of the material constants. 

Equivalently, 𝑐0/𝑐1 = (𝑐 − 3). By substituting these 

terms into the hypoelasticity equation, it will take the  

following form: 

𝑻∎ = 𝑐1 [(𝑐 − 3)(𝑡𝑟𝑻)(𝑡𝑟𝑫)𝑰 + (𝑡𝑟𝑻)𝑫 −
3𝑡𝑟(𝑻𝑫)𝑻

𝑡𝑟𝑻
] 

 

4.3. More elaborated dynamical condition 
 

In this part, the condition of letting the material 

derivative of 𝑻 vanish instead of its objective rate, is 

examined and the two procedures are compared. 

Rationally, this approach is rigor and mathematically 

correct while the previous one (widely used by other 

researchers) is correct only when the vorticity tensor, 𝑾, 

is zero. Here, we require that 𝑻̇ = 𝟎 and the results are 

compared with the previous one. To make such a 

comparison, two different objective stress rates, i.e. 

Jaumann-Zaremba-Noll (Jaumann) and Truesdell rates 

of Cauchy stress tensor, are employed instead of 𝑻∎ with 

equations summarized in Table 1. 

 

Table 1. Objective stress rates incorporated in the analyses 

Row 
Objective stress 

rate, 𝑻∎ 
Equation 

1 Jaumann rate 𝑻o = 𝑻̇ + 𝑻𝑾−𝑾𝑻 

2 Truesdell rate 𝑻□ = 𝑻̇ − 𝑳𝑻 − 𝑻𝑳𝑇 + 𝑻tr𝑫 

 

4.4. Jaumann rate 
 

By taking the Jaumann rate into account, the form of the 

limit state will be found as follows: 

𝑻̇ = 𝑻o − 𝑻𝑾+𝑾𝑻 = ℂℎ𝑒: 𝑫 − 𝑻𝑾+𝑾𝑻 = 𝟎,   

ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 𝑑𝑚𝑛 − 𝑡𝑖𝑘𝑤𝑘𝑗 +𝑤𝑖𝑘𝑡𝑘𝑗 = 0 

where 𝑾 is the vorticity tensor, i.e. 𝑾 = skew𝛁𝒗 

and 𝒗 is the velocity vector.  

To make it possible to take out the common factor 

associated with the kinematical terms, some 

manipulations must be made: 

𝑑𝑚𝑛 =
1

2
(𝑙𝑚𝑛 + 𝑙𝑛𝑚), 𝑤𝑘𝑗 =

1

2
(𝑙𝑘𝑗 − 𝑙𝑗𝑘),   

𝑤𝑖𝑘 =
1

2
(𝑙𝑖𝑘 − 𝑙𝑘𝑖) 

where 𝑙𝑖𝑗  is the components of the velocity gradient 

tensor, 𝑑𝑖𝑗  is the components of the rate of deformation 

tensor and 𝑤𝑖𝑗  is the components of the vorticity tensor.     

Thus: 

𝑡̇𝑖𝑗 =
1

2
ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 (𝑙𝑚𝑛 + 𝑙𝑛𝑚) −

1

2
𝑡𝑖𝑘(𝑙𝑘𝑗 − 𝑙𝑗𝑘) 

+
1

2
(𝑙𝑖𝑘 − 𝑙𝑘𝑖)𝑡𝑘𝑗 

Therefore, after some elaborations: 

𝑡̇𝑖𝑗 = [ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 + ℂ𝑖𝑗𝑛𝑚

ℎ𝑒 − 𝑡𝑖𝑘𝛿𝑘𝑚𝛿𝑗𝑛 + 𝑡𝑖𝑘𝛿𝑗𝑚𝛿𝑘𝑛 +

𝛿𝑖𝑚𝛿𝑘𝑛𝑡𝑘𝑗 − 𝛿𝑘𝑚𝛿𝑖𝑛𝑡𝑘𝑗]  

Since the expression in the parentheses is 

independent of 𝑙𝑚𝑛 and also, 𝑙𝑚𝑛 is arbitrary, then: 

(b)  

(a)  

(8)  

(9a)  

(9b)  

(9d)  

(9c)    
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ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 + ℂ𝑖𝑗𝑛𝑚

ℎ𝑒 − 𝑡𝑖𝑘𝛿𝑘𝑚𝛿𝑗𝑛 + 𝑡𝑖𝑘𝛿𝑗𝑚𝛿𝑘𝑛 

+𝛿𝑖𝑚𝛿𝑘𝑛𝑡𝑘𝑗 − 𝛿𝑘𝑚𝛿𝑖𝑛𝑡𝑘𝑗 = 0 

ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 + ℂ𝑖𝑗𝑛𝑚

ℎ𝑒 − 𝑡𝑖𝑚𝛿𝑗𝑛 + 𝑡𝑖𝑛𝛿𝑗𝑚 

+𝛿𝑖𝑚𝑡𝑛𝑗 − 𝛿𝑖𝑛𝑡𝑚𝑗 = 0 

So far, the expression obtained has been independent 

of the form of the constitutive equation. For the sake of 

comparison and clarification, the simple form of the 

constitutive equation stated earlier is employed and after 

substitution for this equation, one will get: 

(3𝑐0 + 9𝑐1)𝑡𝑚𝑚 +
𝑐2𝑡𝑖𝑗𝑡𝑖𝑗

𝑡𝑚𝑚
= 0 

which is exactly the same as what was previously 

obtained upon setting 𝑻o = 𝟎. 

 

4.5. Truesdell rate 
 

By the virtue of incorporation of the Truesdell objective 

stress rate, one will get: 

𝑻∎ = 𝑻□ = 𝑻̇ − 𝑳𝑻 − 𝑻𝑳𝑻 + 𝑻tr𝑫 

𝑻̇ = 𝑻□ + 𝑳𝑻 + 𝑻𝑳𝑻 − 𝑻tr𝑫 

= ℂℎ𝑒: 𝑫 + 𝑳𝑻 + 𝑻𝑳𝑻 − 𝑻tr𝑫 = 𝟎 

ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 𝑑𝑚𝑛 + 𝑙𝑖𝑚𝑡𝑚𝑗 + 𝑡𝑖𝑚𝑙𝑗𝑚 − 𝑡𝑖𝑗𝑑𝑘𝑘 = 0 

𝑡̇𝑖𝑗 =
1

2
[ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 𝑙𝑚𝑛 + ℂ𝑖𝑗𝑛𝑚

ℎ𝑒 𝑙𝑚𝑛] 

+[𝑡𝑚𝑗𝛿𝑖𝑛𝑙𝑛𝑚 + 𝑡𝑖𝑚𝛿𝑗𝑛𝑙𝑛𝑚 − 𝑡𝑖𝑗𝛿𝑚𝑛𝑙𝑚𝑛] = 0 

Again, after some mathematical manipulations and 

further simplifications and substituting the particular 

form of the constitutive equation for ℂ𝑖𝑗𝑚𝑛
ℎ𝑒 , one will get: 

(3𝑐0 + 9𝑐1 + 3)𝑡𝑘𝑘 +
𝑐2𝑡𝑖𝑗𝑡𝑖𝑗

𝑡𝑚𝑚
= 0 

This form is clearly different from the one obtained 

earlier. As a conclusion, the form of the limit state is 

dependent on the choice of the objective stress rate. 

More to point, the choice of the objective stress rate 

affects the material response. 

 

5. The Limit State by the Second Approach 
 

In the second approach, we require the determinant of 

the matrix representation of the 4th order constitutive 

tensor, ℂℎ𝑒, to vanish. To do so, and for the sake of 

simplicity, the Voigt-Kelvin notation in the principal 

stress space is employed. One should note that all tensors 

𝑻,𝑫 and 𝑻∎ are taken as coaxial, i.e. to have the same 

eigenvectors and hence, this assumption is valid. In 

addition, for the Jaumann stress rate, 𝑻∎ = 𝟎 and 𝑻̇ = 𝟎 

provide the same results (with the proof being a little 

lengthy) equations are derived for 𝑻∎ = 𝟎. Since the 

constitutive equation is homogeneous of degree 1 in 𝑻, 

one may formally assume that tr𝑻 = 1 and hence, the 

matrix form of this equation by the Voigt-Kelvin 

notation can be represented as follows: 

(

 
 
 
 

𝜎1
∎

𝜎2
∎

𝜎3
∎

𝜎4
∎ = 0

𝜎5
∎ = 0

𝜎6
∎ = 0)

 
 
 
 

= 𝑪

(

 
 
 

𝑑1
𝑑2
𝑑3

𝑑4 = 0
𝑑5 = 0
𝑑6 = 0)

 
 
 

, 

  𝑪 =

(

 

𝑐2𝜎1
2 + 𝑐0 + 𝑐1 𝑐0 + 𝑐2𝜎1𝜎2 𝑐0 + 𝑐2𝜎1𝜎3 𝟎

𝑐0 + 𝑐2𝜎1𝜎2 𝑐2𝜎2
2 + 𝑐0 + 𝑐1 𝑐0 + 𝑐2𝜎2𝜎3 𝟎3×3

𝑐0 + 𝑐2𝜎1𝜎3 𝑐0 + 𝑐2𝜎2𝜎3 𝑐2𝜎3
2 + 𝑐0 + 𝑐1 𝟎

𝟎 𝟎3×3 𝟎 𝑐1𝑰3×3)

  

𝜎1 = 𝑡11, 𝜎2 = 𝑡22, 𝜎3 = 𝑡33,     

𝜎4 = 𝑡23, 𝜎5 = 𝑡31, 𝜎6 = 𝑡12 

𝑑1 = 𝑑11, 𝑑2 = 𝑑22, 𝑑3 = 𝑑33,     

𝑑4 = 𝑑23, 𝑑5 = 𝑑31, 𝑑6 = 𝑑12 

𝟎3×3 = (
0 0 0
0 0 0
0 0 0

) , 𝑰3×3 = (
1 0 0
0 1 0
0 0 1

) 

 

5.1. Dynamical condition 
 

Again, it is reminded that the limit state, i.e. 𝑻̇ = 𝟎 

corresponds to the state in which, the kernel of the linear 

operator defined by ℂℎ𝑒, becomes non-empty. In other 

words, there are a subspace of 𝑆(= ℝ3 × ℝ3) where the 

stress rate vanishes for a series of motions. Therefore, it 

can be immediately concluded that the limit state is a 

necessary condition for vanishing the rate of the stress 

tensor and hence, there may be stress paths which can 

escape from the limit state. Now, we derive this 

necessary condition by setting the determinant of 𝑪 to 

zero. An important question is whether the determinant 

(13a) 

(9e)  

(10)  

(11a)  

(11b)  

(11c)  

(11d)  

(13b) 

(13c) 

(13d) 

(12)  

(9f)  
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of 𝑪 (like the one for an arbitrary 2nd order tensor) is 

invariant. Of course, it is not and it may rise serious 

questions on the validity of this approach. However, it is 

possible to mathematically verify whether the 

determinant of 𝑪 = 0 is zero in all coordinate systems 

where all necessary tensors are defined (Private 

communication with Prof. Mojtaba Mahzoon, Professor 

Emeritus in Applied Mechanics and Mathematics, 

School of Mechanical Engineering, Shiraz University, 

Shiraz, Iran, Winter 2023). Now, setting the determinant 

of 𝑪 to zero, with a rather lengthy operations eventually 

gives the following results: 
 

det𝑪 = 𝑐1
6(𝑐1

3 + 𝑐3𝑐1
2𝜎1

2 + 𝑐3𝑐1
2𝜎2

2 + 𝑐3𝑐1
2𝜎3

2 + 3𝑐0𝑐1
2 +

2𝑐0𝑐3𝑐1𝜎1
2 − 2 𝑐0𝑐3𝑐1𝜎1𝜎2 − 2𝑐0𝑐3𝑐1𝜎1𝜎3 + 2𝑐0𝑐3𝑐1𝜎2

2 −

2𝑐0𝑐3𝑐1𝜎2𝜎3 + 2𝑐0𝑐3𝑐1𝜎3
2) = 0  

 

By incorporating the assumption that tr𝑻 = 1, one 

will get the form of the limit state as follows: 

 

tr𝑻2 + 𝑐(tr𝑻)2 = 0   or   (1 + 𝑐)𝐼1
2 − 2𝐼2 = 0 

𝑐 =
(𝑐1
2 + 3𝑐0𝑐1 − 𝑐0𝑐3)

(𝑐3𝑐1 + 3𝑐3𝑐0)
 

𝐽2 + 𝜅
2𝐼1
2 = 0,     𝜅2 = −

(1 + 3𝑐)

6
,   𝑐 < −

1

3
 

This form is exactly the same as the one obtained 

earlier, but with different coefficients.  

So far, the main goal of this research has been 

achieved, i.e. to show that the equations of hypoelasticity 

are capable of providing the limit state and the form of 

the limit state may be similar to those obtained in the 

classical theory of plasticity, in particular, the Drucker-

Prager criterion. Two approaches were taken setting  

𝑻∎ = 𝟎 and by setting the determinant of the coefficient 

matrix (corresponding to the 4th order constitutive 

tensor) to zero. While both approaches may qualitatively 

show similar results, the reason why the equation just 

derived, results in a more practical range for the limit 

state will be elucidated.  

 

6. Application 
 

Despite the main goal being conducting a rational study 

and providing some analytical equations, an application 

of the results thus obtained is presented in predicting the 

material behavior for a particular type of pressure-

sensitive materials. To do so, we employ the dataset of a 

pressure-sensitive material which in this case is the 

Quartz Sand, from dunes at Kurnell, Sydney, Australia 

(experimental data from [23]) in the standard triaxial 

compression test, i.e. with a symmetrical loading with 

𝜎2 = 𝜎3 and 𝑑2 = 𝑑3. Sand properties and constants of 

the constitutive equation are presented in Table 2. Fig. 3 

shows the material response and the stress paths taken in 

three tests at different confining pressures, 𝑝 (= 𝐼1/3), 

towards the limit state. Finite deformation as well as the 

Jaumann stress rate have been assumed. It is clear that 

the infinitesimal deformation theory cannot be 

accurately applied as strains are far beyond the range of 

infinitesimal strains. 

 
Table 2. Parameters of the Quartz Sand [23] 

Quartz Sand (data from [23]) 

Parameter Value 

Mean grain size (mm), 𝑫𝟓𝟎 0.31 

Coefficient of uniformity, 𝑪𝒖 1.83 

Specific gravity, 𝑮𝒔 2.65 

Minimum void ratio, 𝒆𝒎𝒊𝒏  0.60 

Maximum void ratio, 𝒆𝒎𝒂𝒙 0.92 

 

Constitutive equation constants (non-dimensional) 

Constant Value 

                              𝒄𝟎 -10.0 

                              𝒄𝟏 -8.0 

                              𝒄𝟐 +40 

 

7. Discussion 
 

In this study, by assuming a particular form of a 

hypoelastic constitutive equation and a generally 

applicable procedure (by two different approaches), an 

equation for the limit state equation, based on the 

parameters of the constitutive equation that involves 

only one parameter, 𝜅, resembling the Drucker-Prager 

yield criterion was obtained. This parameter was found 

to be 𝜅 = 1.05 and 𝜅 = 0.26 when examined against 

some experimental data, corresponding to the first and 

(14) 

(15a) 

(15b) 

(15c) 
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Fig. 3. Modeling of the Quartz Sand: (a) stress-strain 

response, (b) volume change and (c) stress paths in the tests 

on the Haigh-Westergaard plane towards the limit state. 

 

second approaches, respectively. Therefore, while the 

first approach, i.e. requiring the constitutive tensor 

to vanish, gives no information on the limit state, the 

second approach provides meaningful results 

corresponding to a typical value of 𝜅 analogous to the 

one obtained by classical plasticity theory and Drucker-

Prager failure criterion. In other words, the first value 

corresponds to a conical region which embodies the 

entire stress space explaining the absence of information 

on the limit state. Therefore, it seems that the second 

approach is more suitable in the case of linear kernels as 

it defines a limited region in the stress space, whereas the 

first approach seems to cover the entire space, a result 

that is supported by experimental data. Again, this limit 

state defines a bound which necessitates the stress paths 

to approach the limiting state, but it does not guarantee 

the non-escaping stress paths from this boundary. This 

means that the limit state thus obtained is only a 

necessary condition for stress paths to reach such a state 

and not a sufficient condition.  

In addition to modeling pressure-sensitive materials, 

like porous and granular materials, metallic (often 

pressure insensitive materials) can be successfully 

modeled by the same constitutive equation. To do so, it 

is only required to slightly change the structure of the 

equation to achieve an equation resulting in a limit state 

independent of the hydrostatic pressure. Such an 

equation for the limit state resembles the von Mises 

yield/failure criterion and can, hence, be successfully 

applied to metals. This is an open research area and is 

beyond the length of this paper. 

 

8. Conclusion 
 

The primary goal of this paper was to study the 

possibility of utilizing hypoelasticity in predicting the 

limit state. In this regard, three secondary objectives 

were delineated: (a) the effect of the choice of the 

objective stress rate, (b) the requirements of the limit 

state, i.e. setting the constitutive tensor equal to zero or 

requiring the kernel of the linear operator to be non-

empty and (c) the comparison of the two approaches. 

Despite the rationale form of all equations and general 

derivations, disrespectful of the form of the constitutive 

equation, a simple constitutive equation, i.e. a 

homogeneous of degree one equation in the stress tensor, 

has been suggested and derivations were performed for 

this equation. Results indicated that:  

(a) the limit state can be successfully predicted by the 

hypoelastic constitutive equations, and the forms of 

equations are analogous to the forms of traditional 

failure/yield criteria of classical theory of plasticity.  

(b) The effect of the objective stress rate is very 

important, both in the material response and the limit 

state. This research specifically made comparisons 

between the general form of the limit state equation for 

two objective stress rates, i.e. Jaumann-Zaremba-Noll 

and Truesdell. It was found that both rates give a similar 

form of the limit state equation but with different 

coefficients.  

(c) While both approaches outlined in this research 

may provide the same form of the limit state equation, 

it appears that the second approach, i.e. a non-empty  

kernel for the linear operator of the hypoelastic 

constitutive equation, seems to give rise to a practically 

better boundary for the limit state. It can be observed by  
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looking into the results obtained by the calibration of an 

experimental data. The reason lies in the boundary 

defined by the limit state which, only in the second 

approach covers a limited region in the stress space. 
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