[1] Schulze, V. (2006). Modern mechanical surface treatment: states, stability, effects. John Wiley & Sons.
[3] Vahdati, M., Mahdavinejad, R., & Amini, S. (2017). Investigation of the ultrasonic vibration effect in incremental sheet metal forming process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(6), 971-982.
https://doi.org/10.1177/0954405415578579
[4] Rakita, M., Wang, M., Han, Q., Liu, Y., & Yin, F. (2013). Ultrasonic shot peening. International Journal of Computational Materials Science and Surface Engineering, 5(3), 189-209.
https://doi.org/10.1504/IJCMSSE.2013.056948
[5] Agarwal, K. M., Tyagi, R. K., Chaubey, V. K., & Dixit, A. (2019, November). Comparison of different methods of severe plastic deformation for grain refinement. In IOP Conference Series: Materials Science and Engineering (Vol. 691, No. 1, p. 012074). IOP Publishing.
https://doi.org/10.1088/1757-899X/691/1/012074
[9] Todaka, Y., Umemoto, M., & Tsuchiya, K. (2004). Comparison of nanocrystalline surface layer in steels formed by air blast and ultrasonic shot peening. Materials Transactions, 45(2), 376-379.
https://doi.org/10.2320/matertrans.45.376
[10] Sandá, A., Navas, V. G., & Gonzalo, O. (2011). Surface state of inconel 718 ultrasonic shot peened: Effect of processing time, material and quantity of shot balls and distance from radiating surface to sample. Materials & Design, 32(4), 2213-2220.
https://doi.org/10.1016/j.matdes/2010.11.024
[11] Yin, F., Liu, Y., Xu, R., Zhao, K., Partin, A., & Han, Q. (2018). Nanograined surface fabricated on the pure copper by ultrasonic shot peening and an energy-density based criterion for peening intensity quantification. Journal of Manufacturing Processes, 32, 656-663.
https://doi.org/10.1016/j.jmapro.2018.04.003
[12] Zhu, L., Guan, Y., Lin, J., Zhai, J., & Xie, Z. (2018). A nanocrystalline-amorphous mixed layer obtained by ultrasonic shot peening on pure titanium at room temperature. Ultrasonics Sonochemistry, 47, 68-74.
https://doi.org/10.1016/j.ultsonch.2018.04.017
[13] Mahobia, G. S., Kumar, C. S., & Chattopadhyay, K. (2019). Nanocrystallisation of nickel free high nitrogen austenitic stainless steel through ultrasonic shot peening. In Key Engineering Materials (Vol. 813, pp. 43-48). Trans Tech Publications Ltd.
https://doi.org/10.4028/www.scientific.net/KEM.813.43
[14] Kumar, P., Mahobia, G. S., & Chattopadhyay, K. (2020). Surface nanocrystallization of β-titanium alloy by ultrasonic shot peening. Materials Today: Proceedings, 28, 486-490.
https://doi.org/10.1016/j.matpr.2019.10.174
[15] Watanabe, Y., Hattori, K., Handa, M., Hasegawa, N., Tokaji, K., Ikeda, M., & Duchazeaubeneix, J. M. (2003). Effect of ultrasonic shot peening on fatigue strength of high strength steel. Shot Peening, 305-310.
https://doi.org/10.1016/j.addma.2019.06.014
[16] Pandey, V., Chattopadhyay, K., Srinivas, N. S., & Singh, V. (2017). Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy. International Journal of Fatigue, 103, 426-435.
https://doi.org/10.3390/met10091262
[17] Kumar, S., Chattopadhyay, K., & Singh, V. (2017). Effect of ultrasonic shot peening on LCF behavior of the Ti–6Al–4V alloy. Journal of Alloys and Compounds, 724, 187-197.
https://doi.org/10.1016/j.allcom.2017.07.14
[18] Persenot, T., Burr, A., Plancher, E., Buffière, J. Y., Dendievel, R., & Martin, G. (2019). Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: Consequences on fatigue resistance. Additive Manufacturing, 28, 821-830.
https://doi.org/10.1016/j.addma.2019.06.014
[19] Kumar, C. S., Chattopadhyay, K., Singh, V., & Mahobia, G. S. (2020). Enhancement of low-cycle fatigue life of high-nitrogen austenitic stainless steel at low strain amplitude through ultrasonic shot peening. Materials Today Communications, 25, 101576.
https://doi.org/10.1016/j.metcomm.2020.101576
[20] Kumar, S., Rao, G. S., Chattopadhyay, K., Mahobia, G. S., Srinivas, N. S., & Singh, V. (2014). Effect of surface nanostructure on tensile behavior of superalloy IN718. Materials & Design (1980-2015), 62, 76-82.
https://doi.org/10.1016/j.matdes.2014.04.084
[21] Kumar, S., Chattopadhyay, K., Mahobia, G. S., & Singh, V. (2016). Hot corrosion behaviour of Ti–6Al–4V modified by ultrasonic shot peening. Materials & Design, 110, 196-206.
https://doi.org/10.106/j.matdes.2016.07.33
[22] Li, K., Spartacus, G., Dong, J., Cao, P., & Shin, K. (2017). Effect of ultrasonic shot peening on microstructure and properties of 301SS. Materials and Manufacturing Processes, 32(16), 1851-1855.
https://doi.org/10.1080/10624914.2017.1364863
[23] Pandey, V., Singh, J. K., Chattopadhyay, K., Srinivas, N. S., & Singh, V. (2017). Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. Journal of Alloys and Compounds, 723, 826-840.
https://doi.org/10.106/j.jallcom.2017.06.310
[24] Kumar, C. S., Mahobia, G. S., Podder, A., Kumar, S., Agrawal, R. K., Chattopadhyay, K., & Singh, V. (2019). Role of ultrasonic shot peening on microstructure, hardness and corrosion resistance of nitrogen stabilised stainless steel without nickel. Materials Research Express, 6(9), 096578.
https://doi.org/10.1088/2053-1591/ab2dbe
[25] Zhu, S., Hu, Y., Zhang, X., Zou, Y., Ahmad, T., Zhang, W., Tang, F., & Liang, T. (2020). Experimental investigation on ultrasonic shot peening of WC-Co alloy. Materials and Manufacturing Processes, 35(14), 1576-1583.
https://doi.org/10.1088/10426914.2020.1779943
[26] Zhang, Q., Duan, B., Zhang, Z., Wang, J., & Si, C. (2021). Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti–6Al–4V alloy. Journal of Materials Research and Technology, 11, 1090-1099.
https://doi.org/10.1016/j.jmrt.2021.01.091
[27] Kumar, P., Mahobia, G. S., Mandal, S., Singh, V., & Chattopadhyay, K. (2021). Enhanced corrosion resistance of the surface modified Ti-13Nb-13Zr alloy by ultrasonic shot peening. Corrosion Science, 189, 109597.
https://doi.org/10.1016/j.corsci.2021.109597
[28] Chen, C., & Zhang, H. (2021). Characteristics of friction and wear of Al-Zn-Mg-Cu alloy after application of ultrasonic shot peening technology. Surface and Coatings Technology, 423, 127615.
https://doi.org/10.1016/j.surfcoat.2021.127615
[29] Chen, H., Guan, Y., Zhu, L., Li, Y., Zhai, J., & Lin, J. (2021). Effects of ultrasonic shot peening process parameters on nanocrystalline and mechanical properties of pure copper surface. Materials Chemistry and Physics, 259, 124025.
https://doi.org/10.106/j.matchphys.2020.124025
[30] Xu, Q., Cao, Y., Cai, J., Yu, J., & Si, C. (2021). The influence of ultrasonic shot peening on the surface roughness, microstructure, and mechanical properties of TC2 thin-sheet. Journal of Materials Research and Technology, 15, 384-393.
https://doi.org/10.1016/j.jmrt.2021.08.029
[31] Zhang, J., Jian, Y., Zhao, X., Meng, D., Pan, F., & Han, Q. (2021). The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment. Journal of Magnesium and Alloys, 9(4), 1187-1200.
https://doi.org/10.1016/j.jma.2020.11.012
[32] Dong, Z., Wang, F., Qian, D., Yin, F., Wang, H., Wang, X., Hu, S., & Chi, J. (2022). Enhanced wear resistance of the ultrastrong ultrasonic shot-peened M50 bearing steel with gradient nanograins. Metals, 12(3), 424.
https://doi.org/10.3390/met12030424
[33] Kong, M., Zang, T., Wang, Z., Zhu, L., Zheng, H., Gao, S., & Ngwangwa, H. M. (2023). Effects of constrained groove pressing and temperature-assisted ultrasonic shot peening on microstructure and mechanical properties of a two-phase Mg–Li alloy. Journal of Materials Research and Technology, 23, 1947-1967.
https://doi.org/10.1016/j.jmrt.2023.01.089
[34] Yin, F., Zhang, X., Chen, F., Hu, S., Ming, K., Zhao, J., Xie, L., Liu, Y., Hua, L., & Wang, J. (2023). Understanding the microstructure refinement and mechanical strengthening of dual-phase high entropy alloy during ultrasonic shot peening. Materials & Design, 227, 111771.
https://doi.org/10.1016/j.matdes.2023.111771
[35] Chen, Y., Du, J., Deng, S., Tian, L., & Hu, K. (2023). Effect of ultrasonic shot peening duration on the microstructure and mechanical properties of CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 934, 168023.
https://doi.org/10.1016/j.jallcom.2021.168023
[36] Omidi Hashjin, A., Vahdati, M. & Abedini, R. (2024). Statistical analysis and optimization of variables affecting the macrohardness of USP-treated samples using the desirability function. 20th National and 9th International Conference of Manufacturing Engineering (ICME 2024), Tehran, Iran (In Persian).
[37] Omidi Hashjin, A., Vahdati, M. & Abedini, R. (2024). Experimental study and statistical analysis of the effect of ultrasonic shot peening on the microhardness of the cross section of steel samples. Iranian Journal of Manufacturing Engineering (In Persian).
https://doi.org/10.22034/ijme.2024.470535.1990
[38] Wang, C., Guo, Z., Zhou, B., Li, B., Fei, S., Deng, H., & Shen, G. (2024). Experimental investigation and numerical study on evolution of surface roughness caused by ultrasonic shot peening of 2024 aluminum alloy sheet. Journal of Materials Research and Technology.
https://doi.org/10.1016/j.jmrt.2024.05.254
[39] Han, M., Du, J., Chen, Y., Sun, Q., & Hu, K. (2024). Influence of ultrasonic shot peening on the microstructure and corrosion behavior of AZ80M magnesium alloy. Journal of Alloys and Compounds, 980, 173633.
https://doi.org/10.1016/j.jallcom.2024.173633