[1] Ji, S. M., Jang, S. M., Lee, Y. S., Kwak, H. M., Choi, J. M., & Joun, M. S. (2022). Characterization of Ti-6Al-4V alloy in the temperature range of warm metal forming and fracture analysis of the warm capping process. Journal of Materials Research and Technology, 18, 1590-1606.
https://doi.org/10.1016/j.jmrt.2022.03.066
[2] Bignon, Q., Martin, F., Auzoux, Q., Miserque, F., Tabarant, M., Latu-Romain, L., & Wouters, Y. (2019). Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor. Corrosion Science, 150, 32-41.
https://doi.org/10.1016/j.corsci.2019.01.020
[3] Leyens, C., & Peters, M. (Eds.). (2006). Titanium and titanium alloys: fundamentals and applications. Wiley-vch.
[4] Donachie, M. J. (2000). Titanium: a technical guide. ASM international.
[5] Gheshlaghi, H., Alimirzaloo, V., Shahbaz, M., & Amiri, A. (2022). Numerical study and optimization of the thermomechanical procedure in forging of two-phase Ti-6Al-4V Alloy for artificial hip joint implant. Iranian Journal of Materials Forming, 9(3), 31-43.
https://doi.org/10.22099/ijmf.2022.43334.1219
[6] Ishida, T., Wakai, E., Makimura, S., Casella, A. M., Edwards, D. J., PrabhakaranSenor., D. J., Ammigan, K., Bidhar, S., Hurh, P. G., Pellemoine, F., Densham, C. J., Fitton, M. D., Bennett, J. M., Kim, D., Simos, N., Hagiwara, M., Kawamura, N., Meigo, Sh., & Yonehara, K (2020). Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V. Journal of Nuclear Materials, 541, 152413.
https://doi.org/10.1016/j.jnucmat.2020.152413
[7] Ishida, T., Wakai, E., Makimura, Sh., Hurh, P. G., Ammigan, K., Casella, A. M., Edwards, D. J., Senor, D. J., Densham, C. J., Fitton, M., Bennett, J., Kim, D., Simos, N., Calviani, M., & Torregrosa Martin, C(2020). Radiation damage studies on titanium alloys as high intensity proton accelerator beam window materials. In Proceedings of the 14th International Workshop on Spallation Materials Technology (p. 041001).
https://doi.org/10.7566/JPSCP.28.041001
[8] Chen, G., Ren, C., Qin, X., & Li, J. (2015). Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling. Materials & Design, 83, 598-610.
https://doi.org/10.1016/j.matdes.2015.06.048
[9] Wu, G. Q., Shi, C. L., Sha, W., Sha, A. X., & Jiang, H. R. (2013). Effect of microstructure on the fatigue properties of Ti–6Al–4V titanium alloys. Materials & Design (1980-2015), 46, 668-674.
https://doi.org/10.1016/j.matdes.2012.10.059
[10] Lin, Y. C., Jiang, X. Y., Shuai, C. J., Zhao, C. Y., He, D. G., Chen, M. S., & Chen, C. (2018). Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Materials Science and Engineering: A, 711, 293-302.
https://doi.org/10.1016/j.msea.2017.11.044
[11] Jia, M. T., Zhang, D. L., Gabbitas, B., Liang, J. M., & Kong, C. (2015). A novel Ti–6Al–4V alloy microstructure with very high strength and good ductility. Scripta Materialia, 107, 10-13.
https://doi.org/10.1016/j.scriptamat.2015.05.008
[12] Jiang, F., Fei, L., Jiang, H., Zhang, Y., Feng, Z., & Zhao, S. (2023). Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures. Journal of Materials Research and Technology, 23, 1062-1074.
https://doi.org/10.1016/j.jmrt.2023.01.021
[13] Bodunrin, M. O., Chown, L. H., van der Merwe, J. W., & Alaneme, K. K. (2019). Hot working of Ti-6Al-4V with a complex initial microstructure. International Journal of Material Forming, 12, 857-874.
https://doi.org/10.1007/s12289-018-1457-9
[14] Huang, X., Zang, Y., & Guan, B. (2021). Constitutive models and microstructure evolution of Ti-6Al-4V alloy during the hot compressive process. Materials Research Express, 8(1), 016534.
https://doi.org/10.1088/2053-1591/abdaf0
[16] Bruschi, S., Poggio, S., Quadrini, F., & Tata, M. E. (2004). Workability of Ti–6Al–4V alloy at high temperatures and strain rates. Materials Letters, 58(27-28), 3622-3629.
https://doi.org/10.1016/j.matlet.2004.06.058
[18] Hu, M., Dong, L., Zhang, Z., Lei, X., Yang, R., & Sha, Y. (2018). Correction of flow curves and constitutive modelling of a Ti-6Al-4V alloy. Metals, 8(4), 256.
https://doi.org/10.3390/met8040256
[19] Wu, Y., Liu, H., Xu, J., Zhang, Z., & Xue, Y. (2020). Constitutive equations and processing map for hot deformation of a Ti-6Al-4V alloy prepared with spark-plasma sintering. Materials & Technologies/Materiali in Tehnologije, 54(1).
https://doi.org/10.17222/mit.2019.087
[20] Jha, J. S., Toppo, S. P., Singh, R., Tewari, A., & Mishra, S. K. (2019). Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V. Journal of Materials Processing Technology, 270, 216-227.
https://doi.org/10.1016/j.jmatprotec.2019.02.030
[21] Lin, Y. C., Zhao, C. Y., Chen, M. S., & Chen, D. D. (2016). A novel constitutive model for hot deformation behaviors of Ti–6Al–4V alloy based on probabilistic method. Applied Physics A, 122, 1-9.
https://doi.org/10.1007/s00339-016-0248-8
[22] Lin, Y. C., Wu, Q., Pang, G. D., Jiang, X. Y., & He, D. G. (2020). Hot tensile deformation mechanism and dynamic softening behavior of Ti–6Al–4V alloy with thick lamellar microstructures. Advanced Engineering Materials, 22 (3), 1901193.
https://doi.org/10.1002/adem.201901193
[23] Dhanya, M. S., Anoop, S., Manwatkar, S. K., Kumar, R. R., Gupta, R. K., & Narayana Murty, S. V. S. (2024). Hot workability and microstructure control of Ti6Al4V alloy. Journal of Materials Engineering and Performance, 1-17.
https://doi.org/10.1007/s11665-024-09228-6
[25] Gostariani, R., & Asadi Asadabad, M. (2023). Studying the hot deformation behavior of Zr-1Nb alloy using processing map and kinetic analysis. Journal of Materials Engineering and Performance, 32(5), 2151-2164.
https://doi.org/10.1007/s11665-022-07267-5
[27] Zener, C., & Hollomon, J. H. (1944). Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 15(1), 22-32.
https://doi.org/10.1063/1.1707363
[28] Lin, Y. C., & Chen, X. M. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 32(4), 1733-1759.
https://doi.org/10.1016/j.matdes.2010.11.048
[31] Zhang, Z. X., Qu, S. J., Feng, A. H., Shen, J., & Chen, D. L. (2017). Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. Journal of Alloys and Compounds, 718, 170-181.
https://doi.org/10.1016/j.jallcom.2017.05.097
[33] Ning, Y. Q., Xie, B. C., Liang, H. Q., Li, H., Yang, X. M., & Guo, H. Z. (2015). Dynamic softening behavior of TC18 titanium alloy during hot deformation. Materials & Design, 71, 68-77.
https://doi.org/10.1016/j.matdes.2015.01.009
[34] Kim, J. H., Semiatin, S. L., Lee, Y. H., & Lee, C. S. (2011). A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti-6Al-4V. Metallurgical and Materials Transactions A, 42, 1805-1814.
https://doi.org/10.1007/s11661-010-0567-x
[36] Guo, B., Semiatin, S. L., & Jonas, J. J. (2019). Dynamic transformation during the high temperature deformation of two-phase titanium alloys. Materials Science and Engineering: A, 761, 138047.
https://doi.org/10.1016/j.msea.2019.138047
[38] Ezatpour, H. R., Ebrahimi, G. R., & Zarghani, F. (2024). Effect of processing parameters on the morphology of α-phase in Ti-6Al-4V alloy during the two-step hot deformation. Iranian Journal of Materials Forming, 10(3), 54-62.
https://doi.org/ 10.22099/ijmf.2024.49049.1277