[3] Roven, H. J. (2007, November 3-9). Nanostructured metals by SPD-technology and commercialization. In The Second Chinese-Norwegian Symposium on Light Metals, Shanghai, China.
[5] Zhu, C. F., Du, F. P., Jiao, Q. Y., Wang, X. M., Chen, A. Y., Liu, F., & Pan, D. (2013). Microstructure and strength of pure Cu with large grains processed by equal channel angular pressing. Materials & Design (1980-2015), 52, 23-29.
https://doi.org/10.1016/j.matdes.2013.05.029
[6] Xue, K., Luo, Z., Xia, S., Dong, J., & Li, P. (2024). Study of microstructural evolution, mechanical properties and plastic deformation behavior of Mg-Gd-Y-Zn-Zr alloy prepared by high-pressure torsion. Materials Science and Engineering: A, 891, 145953.
https://doi.org/10.1016/j.msea.2023.145953
[7] Samadzadeh, M., Toroghinejad, M. R., Mehr, V. Y., Asgari, H., & Szpunar, J. A. (2024). Mechanical, microstructural, and textural evaluation of aluminum-MWCNT composites manufactured via accumulative roll bonding at ambient condition. Materials Chemistry and Physics, 315, 128891.
https://doi.org/10.1016/j.matchemphys.2024.128891
[8] Noor, S. V., Eivani, A. R., Jafarian, H. R., & Mirzaei, M. (2016). Inhomogeneity in microstructure and mechanical properties during twist extrusion. Materials Science and Engineering: A, 652, 186-191.
https://doi.org/10.1016/j.msea.2015.11.056
[9] Naik, M. V., Narasaiah, N., Chakravarthy, P., & Kumar, R. A. (2024). Microstructure and mechanical properties of friction stir processed Zn-Mg biodegradable alloys. Journal of Alloys and Compounds, 970, 172160.
https://doi.org/10.1016/j.jallcom.2023.172160
[10] Wang, C., Li, F., Li, Q., Li, J., Wang, L., & Dong, J. (2013). A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Materials & Design, 43, 492-498.
https://doi.org/10.1016/j.matdes.2012.07.047
[11] Djavanroodi, F., Ebrahimi, M., Rajabifar, B., & Akramizadeh, S. (2010). Fatigue design factors for ECAPed materials. Materials Science and Engineering: A, 528(2), 745-750.
https://doi.org/10.1016/j.msea.2010.09.080
[12] Kang, D. H., & Kim, T. W. (2010). Mechanical behavior and microstructural evolution of commercially pure titanium in enhanced multi-pass equal channel angular pressing and cold extrusion. Materials & Design, 31, S54-S60.
https://doi.org/10.1016/j.matdes.2010.01.004
[13] Nakashima, K., Horita, Z., Nemoto, M., & Langdon, T. G. (2000). Development of a multi-pass facility for equal-channel angular pressing to high total strains. Materials Science and Engineering: A, 281(1-2), 82-87
https://doi.org/10.1016/s0921-5093(99)00744-3
[14] Latypov, M. I., Alexandrov, I. V., Beygelzimer, Y. E., Lee, S., & Kim, H. S. (2012). Finite element analysis of plastic deformation in twist extrusion. Computational Materials Science, 60, 194-200.
https://doi.org/10.1016/j.commatsci.2012.03.035
[15] Jiang, J. F., Ying, W. A. N. G., Liu, Y. Z., Xiao, G. F., & Hua, L. I. (2021). Microstructure and mechanical properties of 7005 aluminum alloy processed by one-pass equal channel reciprocating extrusion. Transactions of Nonferrous Metals Society of China, 31(3), 609-625.
https://doi.org/10.1016/S1003-6326(21)65523-1
[16] Gupta, B., Kapoor, A., Singhal, A., & Agarwal, K. M. (2021, July). Effect of die design parameters on materials processed by equal channel angular pressing. In IOP Conference Series: Materials Science and Engineering (Vol. 1168, No. 1, p. 012005). IOP Publishing.
https://doi.org/10.1088/1757-899X/1168/1/012005
[17] Muralidharan, S., & Iqbal, U. M. (2022). Experimental studies and optimization of process variables in multi-angular twist extrusion (MATE) of Cu-Cr-Zr alloy. Materials Today: Proceedings, 68, 1835-1844.
https://doi.org/10.1016/j.matpr.2022.07.411
[18] Attarilar, S., Gode, C., Mashhuriazar, M. H., & Ebrahimi, M. (2021). Tailoring twist extrusion process; the better strain behavior at the lower required loads. Journal of Alloys and Compounds, 859, 157855.
https://doi.org/10.1016/j.jallcom.2020.157855
[19] Zamani, S. A., Bakhshi-Jooybari, M., Gorji, H., Hosseinipour, S. J., & Hoseinzadeh-Amirdehi, M. (2021). Investigation of the effect of die parameters on the mechanical properties of pure copper in The combined process of torsional extrusion and ECAP. Journal of Stress Analysis, 5(2), 83-99.
https://doi.org/10.22084/jrstan.2021.23800.1174
[21] Bisadi, H., Mohamadi, M. R., Miyanaji, H., & Abdoli, M. (2013). A modification on ECAP process by incorporating twist channel. Journal of Materials Engineering and Performance, 22, 875-881.
https://doi.org/10.1007/s11665-012-0323-z
[22] Wang, C., Li, F., Li, Q., Li, J., Wang, L., & Dong, J. (2013). A novel severe plastic deformation method for fabricating ultrafine grained pure copper. Materials & Design, 43, 492-498.
https://doi.org/10.1016/j.matdes.2012.07.047
[23] Wang, C., Li, F., Lu, H., Yuan, Z., & Chen, B. (2013). Optimization of structural parameters for elliptical cross-section spiral equal-channel extrusion dies based on grey theory. Chinese Journal of Aeronautics, 26(1), 209-216.
https://doi.org/10.1016%2Fj.cja.2012.12.012
[24] Heydari Pebdani, F., Nourbakhsh, S. H., & Akbaripanah, F. (2022). Effects of the geometric profile of twist channel angular pressing (TCAP) on the deformation behaviors and microstructure evolution of AL7050 alloy. Journal of Stress Analysis, 6(2), 85-95.
https://doi.org/10.22084/jrstan.2022.26081.1207
[25] Hosseinzadeh, M., & Mouziraji, M. G. (2016). An analysis of tube drawing process used to produce squared sections from round tubes through FE simulation and response surface methodology. The International Journal of Advanced Manufacturing Technology, 87(5), 2179-2194.
https://doi.org/10.1007/s00170-016-8532-5
[26] Djavanroodi, F., Zolfaghari, A. A., Ebrahimi, M., & Nikbin, K. M. (2013). Equal channel angular pressing of tubular samples. Acta Metallurgica Sinica (English Letters), 26, 574-580.
https://doi.org/10.1007/s40195-013-0102-3