Modeling the Plastic Deformation of Dense and Porous Biomaterials Using Modified Yield Criteria by Lode Angle

Document Type : Research Paper

Author

Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

In this research, the von Mises and Gurson models were modified by incorporating the Lode angle and void volume fraction to predict the mechanical behavior of materials with non-uniform geometry or porous (cellular) structures, where the stress state affects yield behavior. The yield functions were enhanced multiplying them by a function of the Lode angle, and the Voce model was employed to account for the hardening or softening of various materials. The material parameters of the Voce model were determined by fitting the experimental data for steel, elk antler, polyurethane foam, and bioscaffold. To improve alignment with experimental data, the void volume fraction was treated as a function of the trace of the plastic strain tensor. It was observed that by varying the Lode function parameters, different shapes for the yield surface were achieved, allowing for the selection of tailored yield function for specific materials. Results of finite element (FE) constitutive modeling showed that by selecting an appropriate yield function and determining suitable values for the Lode angle function parameters, the modified yield function can accurately predict the mechanical behavior of various materials. It was observed that the barreling of porous compressed materials depends on the porosity and friction.

Keywords


[1] Rho, J. Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. https://doi.org/10.1016/s1350-4533(98)00007-1
[2] Hamed, E., Novitskaya, E., Li, J., Chen, P. Y., Jasiuk, I., & McKittrick, J. (2012). Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomaterialia, 8(3), 1080-1092. https://doi.org/10.1016/j.actbio.2011.11.010
[3] Orías, A. A. E. (2005). The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure [Doctoral dissertation, University of Notre Dame]. https://doi.org/10.7274/9k41zc79t6t
[4] Pithioux, M., Lasaygues, P., & Chabrand, P. (2002). An alternative ultrasonic method for measuring the elastic properties of cortical bone. Journal of Biomechanics, 35 (7), 961-968. https://doi.org/10.1016/S00219290(02)00027-1
[5] Lasaygues, P., & Pithioux, M. (2002). Ultrasonic characterization of orthotropic elastic bovine bones. Ultrasonics, 39(8), 567-573. https://doi.org/10.1016/S0041-624X(02)00261-5
[6]  Mercer, C., He, M., Wang, R., & Evans, A. (2006). Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomaterialia, 2(1), 59-68. https://doi.org/10.1016/j.actbio.2005.08.004
[7]  Chen, P. Y., & McKittrick, J. (2011). Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 961-973. https://doi.org/10.1016/j.jmbbm.2011.02.006
[8] Chen, P. Y., Stokes, A., & McKittrick, J. J. A. B. (2009). Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomaterialia, 5(2), 693-706. https://doi.org/10.1016/j.actbio.2008.09.011
[9] Alam, K., Mitrofanov, A. V., Bäker, M., & Silberschmidt, V. V. (2009, August). Stresses in ultrasonically assisted bone cutting. In Journal of Physics: Conference Series (Vol. 181, No. 1, p. 012014). IOP Publishing. https://doi.org/10.1088/1742-6596/181/1/012014
[10] Huang, J., Rapoff, A. J., & Haftka, R. T. (2006). Attracting cracks for arrestment in bone-like composites. Materials & Design, 27(6), 461-469. https://doi.org/10.1016/j.matdes.2004.11.022
[11] Sugita, N., Osa, T., Aoki, R., & Mitsuishi, M. (2009). A new cutting method for bone based on its crack propagation characteristics. CIRP Annals, 58(1), 113-118. https://doi.org/10.1016/j.cirp.2009.03.057
[12] Roberts, A. P., & Garboczi, E. J. (2000). Elastic properties of model porous ceramics. Journal of the American Ceramic Society, 83(12), 3041-3048. https://doi.org/10.1111/j.1151-2916.2000.tb01680.x
[13] Nakajima, H., & Ide, T. (2018). Fabrication, properties and applications of porous metals with directional pores. Materials Science Forum, 933, 49-54. https://doi.org/10.1016/j.pmatsci.2006.09.001
[14] Gibson, L., & Ashby, M. (1997). Cellular solids: structure and properties. Cambridge University Press. 
[15] Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 17(4), 389-407. https://doi.org/10.1007/BF00036191
[16] Tvergaard, V., & Needleman, A. (1984). Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 32(1), 157-69. https://doi.org/10.1016/0001-6160(84)90213-X
[17] Benallal, A. (2017). Constitutive equations for porous solids with matrix behaviour dependent on the second and third stress invariants. International Journal of Impact Engineering, 108, 47-62. https://doi.org/10.1016/j.ijimpeng.2017.05.004
[18] Dæhli, L. E., Morin, D., Børvik, T., & Hopperstad, O. S. (2018). A Lode-dependent Gurson model motivated by unit cell analyses. Engineering Fracture Mechanics, 190, 299-318. https://doi.org/10.1016/j.engfracmech.2017.12.023
[19] Dæhli, L. E. B., Hopperstad, O. S., & Benallal, A. (2019). Effective behaviour of porous ductile solids with a non-quadratic isotropic matrix yield surface. Journal of the Mechanics and Physics of Solids, 130, 56-81. https://doi.org/10.1016/j.jmps.2019.05.014
[20] Huang, S., Li, Z., Chen, Z., Chen, Q., & Pugno, N. (2013). Study on the elastic–plastic behavior of a porous hierarchical bioscaffold used for bone regeneration. Materials Letters, 112, 43-46. https://doi.org/10.1016/j.matlet.2013.08.114
[21] Kelly, N., & McGarry, J. P. (2012). Experimental and numerical characterization of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Journal of the Mechanical Behavior of Biomedical Materials, 9, 184-97. https://doi.org/10.1016/j.jmbbm.2011.11.013
[22] Cazacu, O., & Revil-Baudard, B. (2015). New three-dimensional plastic potentials for porous solids with a von Mises matrix. Comptes Rendus Mécanique, 343(2), 77-94. https://doi.org/10.1016/j.crme.2014.12.001
[23] Willam, K. J., & Warnke, E. (1975). Constitutive model for the triaxial behaviour of concrete. International Association for Bridge and Structural Engineering Proceedings, 19, 1-30. https://sid.ir/paper/600004/en
[24] Ansari Basir, E., & Narooei, K. (2016). Simulation of deformation behavior of porous titanium using modified Gurson yield function. Iranian Journal of Materials Forming, 3(2), 26-38. https://doi.org/10.22099/ijmf.2016.3861
[25] Dong, Y., & Jia, L. J. (2021). Plasticity model for structural steel with Lode angle dependence. Journal of Bridge Engineering, 26(12), 04021087. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001784
[26] Milone, A., Foti, P., Berto, F., & Landolfo, R. (2024). Post-necking and damage modelling of steel structural components: A comprehensive state of the art. Engineering Structures, 321, 118931. https://doi.org/10.1016/j.engstruct.2024.118931
[27] Liu, J., Li, X., Wang, C., Xu, Y., & Xia, K. (2024). A three-dimensional elastoplastic constitutive model incorporating Lode angle dependence. Geomechanics for Energy and the Environment, 38, 100567. https://doi.org/10.1016/j.gete.2024.100567