Effect of Pre-Heat Treatment and Processing Regime on the Behavior of Aluminum Alloy 2024 During Equal Channel Angular Pressing

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran

Abstract

Aluminum alloy 2024 is widely used in various industries, making its strengthening a critical area of research. Severe plastic deformation (SPD) has emerged as a promising method for enhancing the mechanical properties of AA2024; however, few studies have examined the influence of processing parameters on its microstructure evolution and mechanical performance during SPD. In this study, the effects of pre-processing heat treatment and deformation regime on AA2024 during equal channel angular pressing (ECAP) were investigated. The alloy was subjected to two different heat treatments prior to ECAP and processed at two distinct temperatures. Optical microscope (OM) and scanning electron microscopy (SEM) were used to monitor microstructure changes, while Vickers hardness testing evaluated the hardness variation following processing. The results reveal that multiple ECAP passes can only be applied successfully after overaging, as the workability of the alloy is compromised following solution treatment. Furthermore, increasing the processing temperature from 25 ºC to 150 ºC has a limited effect on the alloy's behavior.
 

Keywords


[1]   Goodarzy, M. H., Arabi, H., Boutorabi, M. A., Seyedein, H. S., & Najafabadi, S. H. (2014). The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy. Journal of Alloys and Compounds, 584, 753-759. https://doi.org/10.1016/j.jallcom.2013.09.202 
[2]   Ringer, S. P., Sakurai, T., & Polmear, I. J. (1997). Origins of hardening in aged Al-Cu-Mg-(Ag) alloys. Acta Materialia, 45(9), 3731-3744. https://doi.org/10.1016/S1359-6454(97)00039-6
[3]   Hu, Z. Y., Fan, C. H., Tong, S., Ling, O. U., Dai, N. S., & Wang, L. (2021). Effect of aging treatment on evolution of S′ phase in rapid cold punched Al-Cu-Mg alloy. Transactions of Nonferrous Metals Society of China, 31(7), 1930-1938. https://doi.org/10.1016/S1003-6326(21)65627-3 
[4]   Yaghoubi, S., & Fereshteh‑Saniee, F. (2022). A comprehensive study on soundness, microstructure, and uniformity of 2024 aluminum cups hydro‑mechanically drawn at elevated temperatures. The International Journal of Advanced Manufacturing Technology, 120(11), 7905-7917. https://doi.org/10.1007/s00170-022-09185-1
[5]   Anijdan, S. M., Sadeghi-Nezhad, D., Lee, H., Shin, W., Park, N., Nayyeri, M. J., Jafarian, H. R. & Eivani, A. R. (2021). TEM study of S' hardening precipitates in the cold rolled and aged AA2024 aluminum alloy: influence on the microstructural evolution, tensile properties & electrical conductivity. Journal of Materials Research and Technology, 13, 798-807. https://doi.org/10.1016/j.jmrt.2021.05.003
[6]   Volokitina, I. (2020). Structure and mechanical properties of aluminum alloy 2024 after cryogenic cooling during ECAP. Journal of Chemical Technology and Metallurgy, 55(2), 479-485.
[7]   Dwivedi, S. S., Sharma, S., Li, C., Zhang, Y., Kumar, A., Singh, R., Eldin, S. M., & Abbas, M. (2023). Effect of nano-TiO2 particles addition on dissimilar AA2024 and AA2014 based composite developed by friction stir process technique. Journal of Materials Research and Technology, 26, 1872-1881. https://doi.org/10.1016/j.jmrt.2023.07.234 
[8]   Yuan, M., Wu, J., Meng, O., Zhang, C., Mao, X., Huang, S., & Wang, S. (2022). The Role of Al4C3 morphology in tensile properties of carbon fiber reinforced 2024 aluminum alloy during thermal exposure. Materials, 15(24), 8828. https://doi.org/10.3390/ma15248828
[9]   Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51(7), 881-981. https://doi.org/10.1016/j.pmatsci.2006.02.003
[10] Edalati, K., Ahmed A. Q., Akrami S., Ameyama, K., Aptukov, V., Asfandiyarov, R. N., Ashida, M., Astanin, V., Bachmaier, A., Beloshenko, V. and Bobruk, E. V. (2024). Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review. Journal of Alloys and Compounds. 1002, 174667. https://doi.org/10.1016/j.jallcom.2024.174667
[11] Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H. & Jonas, J. J. (2014). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 60, 130-207. https://doi.org/10.1016/j.pmatsci.2013.09.002
[12] Estrin, Y., & Vinogradov, A. (2013). Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 61(3), 782–817. https://doi.org/10.1016/j.actamat.2012.10.038
[13] Sabirov, I., Murashkin, M. Y., & Valiev, R. Z. (2013). Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Materials Science and Engineering A, 560, 1-24. https://doi.org/10.1016/j.msea.2012.09.020
[14] Koizumi, T., & Kuroda, M. (2018). Grain size effects in aluminum processed by severe plastic deformation. Materials Science and Engineering A, 710, 300-308. https://doi.org/10.1016/j.msea.2017.10.077
[15] Ma, K., Wen, H., Hu, T., Topping, T. D., Isheim, D., Seidman, D. N., Lavernia, E. J., & Schoenug, J. M. (2014). Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Materialia, 62, 141-155. https://doi.org/10.1016/j.actamat.2013.09.042
[16] Khelfa, T., Rekik, M. A., Muñoz-Bolaños, J. A., Cabrera-Marrero, J. M. & Khitouni, M. (2018). Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP). International Journal of Advanced Manufacturing Technology, 95, 1165-1177. https://doi.org/10.1007/s00170-017-1310-1
[17] Bahadori-Fallah, J., Farshidi, M. H., & Kiani-Rashid, A. R. (2019). Equal channel angular pressing of spheroidal graphite cast iron. Matererials Reserch Express, 6, 066542. https://doi.org/10.1088/2053-1591/ab0dcf
[18] Askari Khan-Abadi, M., Farshidi, M. H., & Moayed, M. H. (2021). Microstructure evolution of the stainless steel 316L subjected to different routes of equal channel angular pressing. Iranian Journal of Materials Forming, 8(2), 4-11. https://doi.org/10.22099/ijmf.2021.38714.1169
[19] Lee, W. B., & Chan, K. C. A. (1991). Microplasticity analysis of shear band cracks in rolled 2024 aluminium alloy. International Journal of Fracture. 52, 207–221. https://doi.org/10.1007/BF00034905
[20] Bron, F., Besson, J., & Pineau, A. (2004). Ductile rupture in thin sheets of two grades of 2024 aluminum alloy. Materials Science and Engineering A, 380, 356–364. https://doi.org/10.1016/j.msea.2004.04.008
[21] Sankaran, K. K. & Grant N. J. (1980). The structure and properties of splat-quenched aluminum alloy 2024 containing lithium additions. Materials Science and Engineering, 44(2), 213-227. https://doi.org/10.1016/0025-5416(80)90122-6
[22] Figueiredo, R. B., Cetlin, P. R., & Langdon, T. G. (2009). The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing. Materials Science and Engineering A, 518, 124-131. https://doi.org/10.1016/j.msea.2009.04.007
[23] Cetlin, P. R., Teresa, M., Aguilar, P., Figueiredo, R. B., & Langdon, T. G. (2010). Avoiding cracks and inhomogeneities in billets processed by ECAP. Journal of Materials Science. 45, 4561-4570. https://doi.org/10.1007/s10853-010-4384-9
[24] Volokitina, I., Bychkov, A., Volokitin, A., & Kolesnikov, A. (2023). Natural aging of aluminum alloy 2024 after severe plastic deformation. Metallography, Microstructure, and Analysis, 12(3), 564-566. https://doi.org/10.1007/s13632-023-00966-y
[25] Orozco-Caballero, A., Álvarez-Leal, M., Carreño, F., & Ruano, O. A. (2022). Superplastic behavior of overaged 2024 aluminum alloy after friction stir processing. Metals, 12(11), 1880. https://doi.org/10.3390/met12111880
[26] Asadi, S., & Kazeminezhad, M. (2017). Multi directional forging of 2024 Al alloy after different heat treatments: microstructural and mechanical behavior. Transaction of Indian Institute of Metals, 70, 1707-1719. https://doi.org/10.1007/s12666-016-0967-8
[27] Huang, Y., Robson, J. D., & Prangnell, P. B. (2010). The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy. Acta Materialia, 58(5), 1643–1657. https://doi.org/10.1016/j.actamat.2009.11.008
[28] Lee, S., Furukawa, M., Horita, Z., & Langdon, T. G. (2003). Developing a superplastic forming capability in a commercial aluminum alloy without scandium or zirconium additions. Materials Science and Engineering A, 342(1-2), 294-301. https://doi.org/10.1016/S0921-5093(02)00319-2
[29] Renk, O., & Pippan, R. (2019). Saturation of grain refinement during severe [lastic deformation of single phase materials: reconsiderations, current status and open questions. Materials Transactions, 60(7), 1270-1282. https://doi.org/10.2320/matertrans.MF201918
[30] Gong, Y. L., Wen, C. E., Wu, X. X., Ren, S. Y., Cheng, L. P., & Zhu, X. K. (2013). The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys. Materials Science & Engineering A, 583, 199-204. https://doi.org/10.1016/j.msea.2013.07.001
[31] Fan, C. H., Ling, O. U., Yang, Z. Y., Yang, J. J., & Chen, X. H. (2019). Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al− Cu− Mg alloy subjected to rapid cold stamping. Transactions of Nonferrous Metals Society of China, 29(12), 2455-2462. https://doi.org/10.1016/S1003-6326(19)65153-8
[32] Figueiredo, R. B., Kawasaki, M., & Langdon, T. G. (2023). Seventy years of Hall-Petch, ninety years of superplasticity and a generalized approach to the effect of grain size on flow stress. Progress in Materials Science, 137, 101131. https://doi.org/10.1016/j.pmatsci.2023.101131