The Effects of Multi-Walled Carbon Nanotubes on the Mechanical Properties of Silicone Rubber-Based Nanocomposites

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

Abstract

In this study, multi-walled carbon nanotubes (MWCNTs) were used as reinforcement for silicone rubber at different weight percentages (i.e. 0, 0.25, 0.5, and 1 wt.%). The tensile, compressive, and compression set behaviors of the prepared composites were examined through standard tests. The fracture surface of the tensile samples was also analyzed using a scanning electron microscope (SEM). The results indicate that incorporating 0.25 wt.% MWCNTs into silicone rubber leads to an 11% increase in tensile strength and a 27% increase in elastic modulus compared to pure silicone rubber. Furthermore, the presence of MWCNTs nanoparticles enhances the compressive strength from 3.2 MPa in pure silicone to 6.2 MPa at 0.25 wt.%, while increasing the MWCNT content up to 1 wt.% gradually decreases the compressive strength. Additionally, the presence of MWCNTs reduces the compression set of silicone rubber.

Keywords


[1]   Li, M., & Jeong, Y. G. (2012). Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of polybutylene terephthalate. Journal of Applied Polymer Science, 125(S1), E532-E540. https://doi.org/10.1002/app.36465 
[2]   Kotov, N. A. (2006). Materials science: Carbon sheet solutions. Nature, 442(7100), 254–255. https://doi.org/10.1038/442254a
[3]   Zhang, H. B., Zheng, W. G., Yan, Q., Yang, Y., Wang, J. W., Lu, Z., Ji, G. Y., & Yu, Z. Z. (2010). Electrically conductive PET/graphene nanocomposites prepared by melt compounding. Polymer, 51(5), 1191-1196. https://doi.org/10.1016/j.polymer.2010.01.027
[4]   Bandla, S., & Hanan, J. C. (2012). Microstructure and elastic tensile behavior of polyethylene terephthalate-exfoliated graphene nanocomposites. Journal of Material Science, 47, 876-882. https://doi.org/10.1007/s10853-011-5867-z
[5]   Clayton, L. M., Sikder, A. K., Kumar, A., Cinke, M., Meyyappan, M., & Gerasimov, T. G. (2005). Transparent poly(methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Advanced Functional Materials, 15(1), 101-106. https://doi.org/10.1002/adfm.200305106
[6]   Ortiz-Acevedo, A., Xie, H., Zorbas, V., Sampson, W. M., Dalton, A. B., & Baughman, R. H. (2005). Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. Journal of the American Chemical Society, 127(26), 9512–9517. https://doi.org/10.1021/ja050507f
[7]   Sahoo, N. G., Cheng, H. K. F., Li, L., Chan, S. H., Judeh, Z., & Zhao, J. H. (2009). Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Advanced Functional Materials, 19(24), 3962–3971. https://doi.org/10.1002/adfm.200901486
[8]   Girifalco, L. A., Hodak, M., & Lee, R. S. (2000). Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical. Review B, 62(19), 13104–13110. https://doi.org/10.1103/PhysRevB.62.13104
[9]   Patel, N., & Egorov, S. A. (2005). Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis. Journal of American Chemical Society, 127(41), 14124–14125. https://doi.org/10.1021/ja0530570
[10] Dror, Y., Pyckhout-Hintzen, W., & Cohen, Y. (2005). Conformation of polymers dispersing single-walled carbon nanotubes in water: a small-angle neutron scattering study. Macromolecules, 3(18), 7828–7836. https://doi.org/10.1021/ma0503615
[11] Shang, S. M., Zeng, W., & Tao, X. M. (2011). High stretchable MWNTs/polyurethane conductive nanocomposites. Journal of Materials Chemistry, 21(20), 7274–7280. https://doi.org/10.1039/C1JM10255A
[12] Kumar, V., Kumar, A., Han, S. S., & Park, S. (2021). RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science, 3(3), 233-240. https://doi.org/10.1016/j.nanoms.2020.12.002
[13] Shit, S. C., & Shah, P. (2013). A Review on silicone rubber. National Academy Science Letters, 36(4), 355–365. https://doi.org/10.1007/s40009-013-0150-2
[14] Park, S., Wang, G., Choi, B., Kim, Y., Song, S., Ji, Y., Yoon, M. H., & Lee, T. (2012). Flexible molecular-scale electronic devices. Nature Nanotechnology, 7(7), 438-442. https://doi.org/10.1038/nnano.2012.81
[15] Bokobza, L., & Rapoport, O. (2002). Reinforcement of natural rubber. Journal of Applied Polymer Science, 85(11), 2301–2316. https://doi.org/10.1002/app.10858
[16] Kumar, V., Lee, D. J., & Lee, J. Y. (2016). Studies of RTV silicone rubber nanocomposites based on graphitic nanofillers. Polymer Testing, 56, 369-378. https://doi.org/10.1016/j.polymertesting.2016.11.004
[17] Kim, S. H., Cherney, E. A., & Hackam, R. (1992). Hydrophobic behavior of insulators coated with RTV silicone rubber. IEEE Transactions on Electrical Insulation, 27(3), 610-622. https://doi.org/10.1109/14.142726
[18] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. https://doi.org/10.1038/354056a0
[19] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. https://doi.org/10.1038/nmat1849
[20] Medalia, A. I. (1986). Electrical conduction in carbon black composites. Rubber Chemistry and Technology, 59(3), 432-454. https://doi.org/10.5254/1.3538209
[21] Dahl, M., Liu, Y., & Yin, Y. (2014). Composite titanium dioxide nanomaterials. Chemical Review, 114(19), 9853–9889. https://doi.org/10.1021/cr400634p
[22] Seyedmehdi, S. A., Zhang, H., & Zhu, J. (2012). Superhydrophobic RTV silicone rubber insulator coatings. Applied Surface Science, 258(7), 2972-2976. https://doi.org/10.1016/j.apsusc.2011.11.020
[23] Braley, S. (2006). The chemistry and properties of the medical-grade silicones. Journal of Macromolecular Science: Part A- Chemistry, 4(3), 529-544. https://doi.org/10.1080/00222337008074361
[24] Kumar, V., & Lee, D. J. (2017). Effects of thinner on RTV silicone rubber nanocomposites reinforced with GR and CNTs. Polymers for Advanced Technology, 28(12), 1842-1850. https://doi.org/10.1002/pat.4071
[25] Kumar, V., Kumar, A., Wu, R. R., & Lee, D. J. (2020). RTV silicone rubber/barium titanate- based high performance nanocomposite for energy harvesting. Materials Today Chemistry, 16, 100232. https://doi.org/10.1016/j.mtchem.2019.100232 
[26] Kumar, V. Lee, G., Singh, K., Choi, J., & Lee, D. J. (2020). Structure-property relationship in silicone rubber nanocomposites reinforced with carbon nanomaterials for sensors and actuators. Sensors and Actuators A: Physical, 303, 111712. https://doi.org/10.1016/j.sna.2019.111712
[27] Kim, H. S., Kwon, S. M., Lee, K. H., Yoon, J. S., & Jin, H. J.  (2008). Preparation and characterization of silicone rubber/functionalized carbon nanotubes composites via in situ polymerization. Journal of Nanoscience and Nanotechnology, 8, 5551–5554. https://doi.org/10.1166/jnn.2008.1312 
[28] Frogley, M. D., Ravich, D., & Wagner, H. D. (2003). Mechanical properties of carbon nanoparticle-reinforced elastomers. Composite Science and Technology, 63(11), 1647–1654. https://doi.org/10.1016/S0266-3538(03)00066-6
[29] Najib Alam, M., Kumar, V., Lee, D., & Choi, J. (2023). Synergistically toughened silicone rubber nanocomposites using carbon nanotubes and molybdenum disulfide for stretchable strain sensors. Composites Part B: Engineering, 259(15), 110759. https://doi.org/10.1016/j.compositesb.2023.110759
[30] Chen, L., Lu, L., Wu, D., & Chen, G. (2007). Silicone rubber-graphite nano sheet electrically conducting nano composite with a low percolation threshold. Polymer Composites, 28(4), 493–498. https://doi.org/10.1002/pc.20323
[31] Witt, N., Tang, Y., Ye, L., & Fang, L. (2013). Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Materials and Design, 45, 548–554. https://doi.org/10.1016/j.matdes.2012.09.029
[32] Esmaeili, A., Masters, I., & Hossain, M. (2023). A novel carbon nanotube doped natural rubber nanocomposite with balanced dynamic shear properties and energy dissipation for wave energy applications. Results in Materials, 17, 100358. https://doi.org/10.1016/j.rinma.2022.100358
[33] Esmaeili, A., Hossain, M., & Masters, I. (2023). Comparison of two compounding techniques for carbon nanotubes filled natural rubbers through microscopic and dynamic mechanical characterizations. Materials Letters, 335, 133786. https://doi.org/10.1016/j.matlet.2022.133786
[34] Kumar, V. Najib Alam, M., Manikkavel, A. (2021). Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review. Polymers, 13(14), 2322. https://doi.org/10.3390/polym13142322
[35] Zhang, J., Kong, Z., An, Q., Wu, T., & Zou, L. (2024). A flexible thermal interface composite of copper-coated carbon felts with 3D architecture in silicon rubber. Polymer, 313, 127747. https://doi.org/10.1016/j.polymer.2024.127747 
[36] Huang, P., Xia, Z., & Cui, S. (2018). 3D printing of carbon fiber-filled conductive silicon rubber. Materials and Design, 142, 11-21. https://doi.org/10.1016/j.matdes.2017.12.051
[37] Bian, L., Pan, J., Gao, M., & Cheng, Y. (2024). Improved energy method and agglomeration influence of carbon nanotubes on polymer composites. Journal of Molecular Graphics and Modelling, 132, 108838. https://doi.org/10.1016/j.jmgm.2024.108838 
[38] Zare, Y. (2016). Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 84, 158-164. https://doi.org/10.1016/j.compositesa.2016.01.020
[39] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACA Nano, 3(12), 3884–3890. https://doi.org/10.1021/nn9010472
[40] Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., & Guo, T. (2009). Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297–2302. https://doi.org/10.1002/adfm.200801776
[41] Yue, L., Hongwen, L., Caiyun, J., & Jiale, S. (2022). The study of effect of carbon nanotubes on the compressive strength of cement-based materials based on machine learning. Construction and Building Materials, 358, 129435. https://doi.org/10.1016/j.conbuildmat.2022.129435
[42] Naik, N. K., Pandya, K. S., Kavala, V. R., Zhang, W., & Koratkar, N. A. (2015). High-strain rate compressive behavior of multi-walled carbon nanotube dispersed thermoset epoxy resin. Journal of Composite Materials, 49(8), 903–910. https://doi.org/10.1177/0021998314527329
[43] Lu, Y., Zhang, J., Chang, P., Quan, Y., & Chen, Q. (2011). Effect of filler on the compression set, compression stress–strain behavior, and mechanical properties of polysulfide sealants. Journal of Applied Polymer Science, 120(4), 2001–2007. https://doi.org/10.1002/app.33298
[44] Thomas, S. P., Thomas, S., Marykutty, C. V., Mathew, E. J. (2013). Evaluation of effect of various nanofillers on technological properties of NBR/NR blend vulcanized using BIAT-CBS system. Journal of Polymers, 2013(1), 798232. https://doi.org/10.1155/2013/798232
[45] Jalham, I. S., & Maita, I. J. (2006). Testing and evaluation of rubber base composites Reinforced with silica sand. Journal of Composite Material, 40(23), 2099-2112. https://doi.org/10.1177/0021998306061322