[1] Li, M., & Jeong, Y. G. (2012). Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of polybutylene terephthalate. Journal of Applied Polymer Science, 125(S1), E532-E540.
https://doi.org/10.1002/app.36465
[3] Zhang, H. B., Zheng, W. G., Yan, Q., Yang, Y., Wang, J. W., Lu, Z., Ji, G. Y., & Yu, Z. Z. (2010). Electrically conductive PET/graphene nanocomposites prepared by melt compounding. Polymer, 51(5), 1191-1196.
https://doi.org/10.1016/j.polymer.2010.01.027
[4] Bandla, S., & Hanan, J. C. (2012). Microstructure and elastic tensile behavior of polyethylene terephthalate-exfoliated graphene nanocomposites. Journal of Material Science, 47, 876-882.
https://doi.org/10.1007/s10853-011-5867-z
[5] Clayton, L. M., Sikder, A. K., Kumar, A., Cinke, M., Meyyappan, M., & Gerasimov, T. G. (2005). Transparent poly(methyl methacrylate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Advanced Functional Materials, 15(1), 101-106.
https://doi.org/10.1002/adfm.200305106
[6] Ortiz-Acevedo, A., Xie, H., Zorbas, V., Sampson, W. M., Dalton, A. B., & Baughman, R. H. (2005). Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. Journal of the American Chemical Society, 127(26), 9512–9517.
https://doi.org/10.1021/ja050507f
[7] Sahoo, N. G., Cheng, H. K. F., Li, L., Chan, S. H., Judeh, Z., & Zhao, J. H. (2009). Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Advanced Functional Materials, 19(24), 3962–3971.
https://doi.org/10.1002/adfm.200901486
[8] Girifalco, L. A., Hodak, M., & Lee, R. S. (2000). Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical. Review B, 62(19), 13104–13110.
https://doi.org/10.1103/PhysRevB.62.13104
[9] Patel, N., & Egorov, S. A. (2005). Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis. Journal of American Chemical Society, 127(41), 14124–14125.
https://doi.org/10.1021/ja0530570
[10] Dror, Y., Pyckhout-Hintzen, W., & Cohen, Y. (2005). Conformation of polymers dispersing single-walled carbon nanotubes in water: a small-angle neutron scattering study. Macromolecules, 3(18), 7828–7836.
https://doi.org/10.1021/ma0503615
[11] Shang, S. M., Zeng, W., & Tao, X. M. (2011). High stretchable MWNTs/polyurethane conductive nanocomposites. Journal of Materials Chemistry, 21(20), 7274–7280.
https://doi.org/10.1039/C1JM10255A
[12] Kumar, V., Kumar, A., Han, S. S., & Park, S. (2021). RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science, 3(3), 233-240.
https://doi.org/10.1016/j.nanoms.2020.12.002
[14] Park, S., Wang, G., Choi, B., Kim, Y., Song, S., Ji, Y., Yoon, M. H., & Lee, T. (2012). Flexible molecular-scale electronic devices. Nature Nanotechnology, 7(7), 438-442.
https://doi.org/10.1038/nnano.2012.81
[17] Kim, S. H., Cherney, E. A., & Hackam, R. (1992). Hydrophobic behavior of insulators coated with RTV silicone rubber. IEEE Transactions on Electrical Insulation, 27(3), 610-622.
https://doi.org/10.1109/14.142726
[24] Kumar, V., & Lee, D. J. (2017). Effects of thinner on RTV silicone rubber nanocomposites reinforced with GR and CNTs. Polymers for Advanced Technology, 28(12), 1842-1850.
https://doi.org/10.1002/pat.4071
[25] Kumar, V., Kumar, A., Wu, R. R., & Lee, D. J. (2020). RTV silicone rubber/barium titanate- based high performance nanocomposite for energy harvesting. Materials Today Chemistry, 16, 100232.
https://doi.org/10.1016/j.mtchem.2019.100232
[26] Kumar, V. Lee, G., Singh, K., Choi, J., & Lee, D. J. (2020). Structure-property relationship in silicone rubber nanocomposites reinforced with carbon nanomaterials for sensors and actuators. Sensors and Actuators A: Physical, 303, 111712.
https://doi.org/10.1016/j.sna.2019.111712
[27] Kim, H. S., Kwon, S. M., Lee, K. H., Yoon, J. S., & Jin, H. J. (2008). Preparation and characterization of silicone rubber/functionalized carbon nanotubes composites via in situ polymerization. Journal of Nanoscience and Nanotechnology, 8, 5551–5554.
https://doi.org/10.1166/jnn.2008.1312
[29] Najib Alam, M., Kumar, V., Lee, D., & Choi, J. (2023). Synergistically toughened silicone rubber nanocomposites using carbon nanotubes and molybdenum disulfide for stretchable strain sensors. Composites Part B: Engineering, 259(15), 110759.
https://doi.org/10.1016/j.compositesb.2023.110759
[30] Chen, L., Lu, L., Wu, D., & Chen, G. (2007). Silicone rubber-graphite nano sheet electrically conducting nano composite with a low percolation threshold. Polymer Composites, 28(4), 493–498.
https://doi.org/10.1002/pc.20323
[31] Witt, N., Tang, Y., Ye, L., & Fang, L. (2013). Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Materials and Design, 45, 548–554.
https://doi.org/10.1016/j.matdes.2012.09.029
[32] Esmaeili, A., Masters, I., & Hossain, M. (2023). A novel carbon nanotube doped natural rubber nanocomposite with balanced dynamic shear properties and energy dissipation for wave energy applications. Results in Materials, 17, 100358.
https://doi.org/10.1016/j.rinma.2022.100358
[33] Esmaeili, A., Hossain, M., & Masters, I. (2023). Comparison of two compounding techniques for carbon nanotubes filled natural rubbers through microscopic and dynamic mechanical characterizations. Materials Letters, 335, 133786.
https://doi.org/10.1016/j.matlet.2022.133786
[34] Kumar, V. Najib Alam, M., Manikkavel, A. (2021). Silicone rubber composites reinforced by carbon nanofillers and their hybrids for various applications: A review. Polymers, 13(14), 2322.
https://doi.org/10.3390/polym13142322
[35] Zhang, J., Kong, Z., An, Q., Wu, T., & Zou, L. (2024). A flexible thermal interface composite of copper-coated carbon felts with 3D architecture in silicon rubber. Polymer, 313, 127747.
https://doi.org/10.1016/j.polymer.2024.127747
[37] Bian, L., Pan, J., Gao, M., & Cheng, Y. (2024). Improved energy method and agglomeration influence of carbon nanotubes on polymer composites. Journal of Molecular Graphics and Modelling, 132, 108838.
https://doi.org/10.1016/j.jmgm.2024.108838
[38] Zare, Y. (2016). Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 84, 158-164.
https://doi.org/10.1016/j.compositesa.2016.01.020
[39] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACA Nano, 3(12), 3884–3890.
https://doi.org/10.1021/nn9010472
[40] Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., & Guo, T. (2009). Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials, 19(14), 2297–2302.
https://doi.org/10.1002/adfm.200801776
[41] Yue, L., Hongwen, L., Caiyun, J., & Jiale, S. (2022). The study of effect of carbon nanotubes on the compressive strength of cement-based materials based on machine learning. Construction and Building Materials, 358, 129435.
https://doi.org/10.1016/j.conbuildmat.2022.129435
[42] Naik, N. K., Pandya, K. S., Kavala, V. R., Zhang, W., & Koratkar, N. A. (2015). High-strain rate compressive behavior of multi-walled carbon nanotube dispersed thermoset epoxy resin. Journal of Composite Materials, 49(8), 903–910.
https://doi.org/10.1177/0021998314527329
[43] Lu, Y., Zhang, J., Chang, P., Quan, Y., & Chen, Q. (2011). Effect of filler on the compression set, compression stress–strain behavior, and mechanical properties of polysulfide sealants. Journal of Applied Polymer Science, 120(4), 2001–2007.
https://doi.org/10.1002/app.33298
[44] Thomas, S. P., Thomas, S., Marykutty, C. V., Mathew, E. J. (2013). Evaluation of effect of various nanofillers on technological properties of NBR/NR blend vulcanized using BIAT-CBS system. Journal of Polymers, 2013(1), 798232.
https://doi.org/10.1155/2013/798232
[45] Jalham, I. S., & Maita, I. J. (2006). Testing and evaluation of rubber base composites Reinforced with silica sand. Journal of Composite Material, 40(23), 2099-2112.
https://doi.org/10.1177/0021998306061322