[1] Liu, G. L., Zheng, J. T., Huang, C. Z., Sun, S. F., Liu, X. F., Dai, L. J., Wang, D. X., & Wang, X. Y. (2023). Coupling effect of micro-textured tools and cooling conditions on the turning performance of aluminum alloy 6061. Advances in Manufacturing. 11(4), 663-681.
https://doi.org/0.1007/s40436-022-00432-y
[2] Zhang, S., Shi, H., Wang, B., Ma, C., & Li, Q. (2024). Research on the milling performance of micro-groove ball end mills for titanium alloys. Lubricants, 12(6), 204.
https://doi.org/10.3390/lubricants12060204
[3] Gostariani, R., Vaez, G., Ansaripour, M., & Babanejad, A. (2024). Constitutive modeling and microstructural evolution of hot deformed ti-6al-4v alloy starting with initial fully lamellar microstructure. Iranian Journal of Materials Forming, 11(2), 30-45.
http://doi.org/10.22099/ijmf.2024.49974.1292
[5] Outeiro, J., Cheng, W., Chinesta, F., & Ammar, A. (2022). Modelling and optimization of machining of Ti-6Al-4V titanium alloy using machine learning and design of experiments methods. Journal of Manufacturing and Materials Processing, 6(3), 58.
https://doi.org/10.3390/jmmp6030058
[6] Jiang, G., Yang, H., Xiao, G., Zhao, Z., & Wu, Y. (2022). Titanium alloys surface integrity of belt grinding considering different machining trajectory direction. Frontiers in Materials, 9, 1052523.
https://doi.org/10.3389/fmats.2022.1052523
[7] Shokrani, A., Al-Samarrai, I., & Newman, S. T. (2019). Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. Journal of Manufacturing Processes, 43, 229-43.
https://doi.org/10.1016/j.jmapro.2019.05.006
[8] Narita, H. (2020). Cutting features between surface roughness in feed direction and machining state of radius end mill against inclined surfaces (in case of contour machining and five-axis machining with constant tilt angle). International Journal of Automation Technology, 14(1), 46-51.
https://doi.org/10.20965/ijat.2020.p0046
[9] Yujiang, L., & Tao, C. (2021). Research on cutting performance in high-speed milling of TC11 titanium alloy using self-propelled rotary milling cutters. The International Journal of Advanced Manufacturing Technology, 116, 2125-2135.
https://doi.org/10.21203/rs.3.rs-205334/v1
[10] Kumar, M. K., Gurudatt, B., Reddappa, H. N., & Suresh, R. (2021). Investigations on the effect of machining parameters on machining force and roughness in micro-milling of titanium Gr5 and Gr12 alloys under dry machining conditions using carbide tool. Materials Today: Proceedings, 47, 2598-2602.
https://doi.org/10.1016/j.matpr.2021.05.082
[11] Danesh, M., & Rahimi, A. (2020). Effect of cutting tool vibration and tool wear on the surface topography of workpiece while machining Ti6Al4V Titanium alloy using laser profilometry. Iranian Journal of Manufacturing Engineering, 7(10), 34-45.
[12] Festas, A., Ramos, A., & Davim, J. P. (2022). Machining of titanium alloys for medical application-a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(4), 309-318.
https://doi.org/10.1177/09544054211028531
[13] Brown, M., M’saoubi, R., Crawforth, P., Mantle, A., McGourlay, J., & Ghadbeigi, H. (2021). On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Technology, 299, 117378.
https://doi.org/10.1016/j.jmatprotec.2021.117378
[14] Daniyan, I. A., Tlhabadira, I., Mpofu, K., & Muvunzi, R. (2021). Numerical and experimental analysis of surface roughness during the milling operation of titanium alloy Ti6Al4V. International Journal of Mechanical Engineering and Robotics Research, 10(12), 683-693.
https://doi.org/10.18178/ijmerr.10.12.683-693
[16] Li, C., Hu, Y., Zhang, F., Geng, Y., & Meng, B. (2022). Molecular dynamics simulation of laser assisted grinding of GaN crystals. International Journal of Mechanical Sciences, 239, 107856.
https://doi.org/10.1016/j.ijmecsci.2022.107856
[17] Sabarinathan, P., Annamalai, V. E., & Xavier Kennedy, A. (2020). On the use of grains recovered from spent vitrified wheels in resinoid applications. Journal of Material Cycles and Waste Management, 22(1), 197–206.
https://doi.org/10.1007/s10163-019-00927-0
[18] Li, L., Ren, X., Feng, H., Chen, H., & Chen, X. (2021). A novel material removal rate model based on single grain force for robotic belt grinding. Journal of Manufacturing Processes, 68, 1–12.
https://doi.org/10.1016/j.jmapro.2021.05.029
[19] Palaniyappan, S., Veiravan, A., Kumar, V., Mathusoothanaperumal Sukanya, N., & Veeman, D. (2022). Process optimization and removal of phenol formaldehyde resin coating using mechanical erosion process. Progress in Rubber, Plastics and Recycling Technology, 38(2), 141–154.
https://doi.org/10.1177/14777606211066316
[20] Shengwang, Z. H. U., Guijian, X. I. A. O., Yi, H. E., Gang, L. I. U., Shayu, S. O. N. G., & Jiahua, S. (2022). Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. Journal of Advanced Manufacturing Science and Technology, 2(1), 2022003.
https://doi.org/10.51393/j.jamst.2022003
[21] Zhu, S., Xiao, G., He, Y., Liu, G., Song, S., & Jiahua, S. (2022). Tip vortex cavitation of propeller bionic noise reduction surface based on precision abrasive belt grinding. J. Adv. Manuf. Sci. Technol. 2 (1), 2022003.
https://doi.org/10.51393/j.jamst.2022003
[22] Kibasomba, P. M., Dhlamini, S., Maaza, M., Liu, C. P., Rashad, M. M., Rayan, D. A., & Mwakikunga, B. W. (2018). Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results in Physics, 9, 628-635.
https://doi.org/10.1016/j.rinp.2018.03.008
[23] Nath, D., Singh, F., & Das, R. (2020). X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Materials Chemistry and Physics, 239, 122021.
https://doi.org/10.1016/j.matchemphys.2019.122021
[24] Rajamani, R., & SP, L. K. (2025). Micro-milling cutting conditions influence on part geometrical accuracy, surface quality and tool wear in Ti-grade-5 alloy. Materials Research Express, 12(2), 025403.
https://doi.org/10.1088/2053-1591/adb37c
[25] Hou, G., & Li, A. (2021). Effect of surface micro-hardness change in multistep machining on friction and wear characteristics of titanium alloy. Applied Sciences, 11(16), 7471.
https://doi.org/10.3390/app11167471
[26] Hou, G., Li, A. H., Song, X., Sun, H., & Zhao, J. (2018). Effect of cutting parameters on surface quality in multi-step turning of Ti-6Al-4V titanium alloy. The International Journal of Advanced Manufacturing Technolog, 98, 1355–1365.
https://doi.org/10.1007/s00170-018-2317-y
[27] Lozano, P., Peña, M., Herrero-Climent, M., Rios-Santos, J. V., Rios-Carrasco, B., Brizuela, A., & Gil, J. (2022). Corrosion behavior of titanium dental implants with implantoplasty. Materials, 15(4), 1563.
https://doi.org/10.3390/ma15041563