[1] A. Azushima, R. Kopp, A. Korhonen, Severe plastic deformation (SPD) processes for metals, CIRP Ann, 2008; 57: 716–735.
[2] R. N. Chari, B. M. Dariani, A. F. Arezodar, Numerical and experimental studies on deforamion behavior of 5083 aluminum alloy strips in equal channel angular rolling,
Proc Inst Mec Eng, B J Eng Manuf , 2016,
https://doi.org.
[3] M. H. Farshidi, M. Kazeminezhad, The effects of die geometry in tube channel pressing: Severe plastic deformation, Proc Inst Mech Eng, L J Mater Des Appl, 2016; 230 (1): 263–272.
[4] M. Mahmoodi, M. Sedighi, D.A. Tanner, Experimental study of process parameters' effect on surface residual stress magnitudes in equal channel angular rolled aluminum alloys, Proc Inst Mech Eng, B J Eng Manuf , 2012; 34: 483–487.
[5] M. Mahmoodi A. Naderi, Applicability of artificial neural network and nonlinear regression to predict mechanical properties of equal channel angular rolled Al5083 sheets, Lat Am j solids struct, 2014; 228: 1592–1598.
[6] M. Honarpisheh, E. Haghighat, M. Kotobi, Investigation of residual stress and mechanical propeties of equal channel angular rolled St12 strips,
Proc Inst Mech Eng, L J Mater Des Appl, 2016. DOI:
10.1177/1464420716652436.
[7] J. C. Lee, H. K. Seok, J. Y. Suh, Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing, Acta Mater, 2002; 50: 4005–4019.
[8] Y. H. Chung, J. W. Park, K.H. Lee, An Analysis of Accumulated Deformation in the Equal Channel Angular Rolling (ECAR) Process, Metal and Material International, 2006; 12: 289-292.
[9] Y. H. Chung, J. W. Park, K. H. Lee, Controlling the Thickness Uniformity in Equal Channel Angular Rolling (ECAR), Mater. Sci. Forum, 2007; 539: 2872–2877.
[10] Y. Q. Cheng, Z. H. Chen, W.J. Xia, Improvement of drawability at room temperature in AZ31 magnesium alloy sheets processed by equal channel angular rolling, J Mater Eng Perform, 2008; 17: 15–19.
[11] Y. Q. Cheng, Z. H. Chen, W. J. Xia, Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature, Mater, Charact, 2007; 58: 617–622.
[12] A. Habibi, M. Ketabchi, Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing, Mater, 2012; 34: 483–487.
[13] M. Mahmoodi, A. Naderi, G. Dini, Correlation between structural parameters and mechanical properties of Al5083 sheets processed by ECAR, J Mater Eng Perform, 2017; 26: 6022–6027.
[14] M. Kotobi, M. Honarpisheh, Uncertainty analysis of residual stress measured by slitting method in equal-channel angular rolled Al-1060 strips, J Strain Anal Eng Des, 2016; 52 (2): 83-92.
[15] M. Mahmoodi, S. Lohrasbi, Investigation of residual stresses distribution in equal channel angular rolled aluminum alloy by means of the slitting method, J Strain Anal Eng Des, 2017; 52 (6): 389-396.
[16] N. Anjabin, A.K. Taheri, Physically based material model for evolution of stress–strain behavior of heat treatable aluminum alloys during solution heat treatment, Mater Des, 2010; 31: 433–437.
[17] J. Gubicza, N. Q. Chinh, Z. Horita, Effect of Mg addition on microstructure and mechanical properties of aluminum, Mater Sci Eng, A, 2004; 387-389: 55–59.
[18] J. Gubicza, N. Q. Chinh, J. L. Labar, Correlation between microstructure and mechanical properties of severely deformed metals, J Alloys Compd, 2009; 483: 271–274.
[19] V. M. Segal, Materials processing by simple shear, Materials Science and Engineering A, 1995; 197: 157-164.
[20] L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl Instrum Methods Phys Res, Sect B, 2010; 268: 334–340.
[21] P. Sahu, M. De, S. Kajiwara, Microstructural characterization of stress-induced martensites evoluted at low temperature in deformed powders of Fe-Mn-C alloys by Rietveld method, J Alloys Compd, 2002; 346: 158–169.
[22] G. Dini, A. Najafizadeh, S. M. Monir-Vaghefi, Grain size effect on the martensite formation in a high-manganese TWIP steel by the Rietveld method, J Mater Sci Technol, 2010; 26: 181–186.
[23] M. R. Rezaei, M. R. Toroghinead, F. Ashrafizadeh, Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bonding, Mater Sci Eng, A, 2011; 529: 442–446.
[24] M. Mahmoodi, The effect of ECAR parameters on residual stresses and mechanical-microstructural properties of Al sheets, PhD Thesis, Iran University of Science and Technology, Iran, 2011.
[25] M. Janecek, J. Cizek, M. Dopita, Mechanical properties and microstructure development of ultrafine-grained Cu processed by ECAP, Mater Sci Forum, 2008; 584–586: 440–445.
[26] J. Tu, T. Zhou, L. Liu, L. Shi, Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature, Journal of Alloys and Compounds, 2018; 768: 598-607.
[27] T. Kvackaj, A. Kovacova, R. Kocisko, Microstructure evolution and mechanical performance of copper processed by equal channel angular rolling, Materials Characterization, 2017; 134: 246–252.
[28] J. Gubicza, N. Q. Chinh, T. G. Langdon, Microstructure and strength of metals processed by severe plastic deformation, Ultrafine Grained Materials IV, 2006; 231–236.
[29] N. Hansen, X. Huang, Microstructure and flow stress of polycrystals and single crystals, Acta Mater, 1998; 46: 1827–1836.
[30] Z. Y. Zhong, H. G. Brokmeier, W. M. Gan, Dislocation density evaluation of AA7020-T6 investigated by in-situ synchrotron diffraction under tensile load, Mater Charact, 2015; 108: 124–131.
[31] Y. Miyajima, S. Okubo, H. Abe, Dislocation density of pure copper processed by accumulative roll bonding and equal channel angular pressing, Mater Charact, 2015; 104: 101–106.
[32] W. J. Kim, J. K. Kim, T. Y. Park, S. I. Hong, D. I. Kim, Y. S. Kim, J. D. Lee, Enhancement of Strength and Superplasticity in a 6061 Al Alloy Processed by Equal-Channel-Angular-Pressing, Metallurgical and Materials Transactions A, 2002; 33A: 3155.