[1] V. J. Slycken, P. Verleysen, J. Degrieck, J. Bouquerel and B. C. De Cooman, Dynamic response of aluminum
containing TRIP steel and its constituent phases, Material Science and Engineering A, 460–461 (2007) 516–524.
[2] Z. H. Cai, H. Ding, X. Xue and Q. B. Xin, Microstructural evolution and mechanical properties of hot-rolled
11% manganese TRIP steel, Materials Science & Engineering A, 560 (2013) 388-395.
[3] L. A. Dobrzanski and W. Borek, Thermo-mechanical treatment of Fe–Mn–(Al,Si) TRIP/TWIP steels, Archives
of Civil and Mechanical Engineering, (2012) 299-304.
[4] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot and N. Guelton, "Correlations between the calculated stacking
fault energy and the plasticity mechanisms in Fe–Mn–C alloys," Materials Science and Engineering A, Vols.
387-389, pp. 158-162, 2004.
[5] A. Dumay, J. P. Chateau, S. Allain, M. S. and O. Bouaziz, Influence of addition elements on the stacking-fault
energy and mechanical properties of an austenitic Fe–Mn–C steel, Materials Science and Engineering A, 483-
484, (2008) 184-187.
[6] H. Idrissi, K. Renard, L. Ryeland, D. Schryvers and P. J. Jacques, On the mechanism of twin formation in Fe–
Mn–C TWIP steels, Acta Materialia, 58, (2010) 2464-2476.
[7] S. Lee, S. J. Lee, S. S. Kumar, K. Lee and B. C. De Cooman, Localized deformation in multiphase, ultra-finegrained
6 Pct Mn transformation-induced plasticity steel, Metallurgical and Materials Transactions A, 42,
(2011) 3638-3651.
[8] P. J. Gibbs, E. De Moor, M. J. Merwin, B. Clausen, S. J. G. and D. K. Matlock, Austenite stability effects on
tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metallurgical and
Materials Transactions A, 42, (2011) 3691-3702.
[9] O. Grassel, L. Kruger, G. Frommeyer and L. W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels
development-properties-application, International Journal of Plasticity, 16, (2000) 1391-1409.
[10]O. Matsumura, Y. Sakuma and H. Takechi, Enhancement of elongation by retained austenite in intercritical
annealed 0.4C-1.5Si-0.8Mn Steel, Transactions of the Iron and Steel Institute of Japan, 27 (1987) 570-579,
1987.
[11]O. Bouaziz, S. Allain, C. P. Scott, C. P. and D. Barbier, High manganese austenitic twinning induced plasticity
steels: A review of the microstructure properties relationships, Current Opinion in Solid State and Materials
Science, 15 (2011) 141-168.
[12]S. Curtze and V. T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault
energy, temperature and strain rate, Acta Materialia, 58 (2010) 5129-5141.
[13] J. Jin and Y. Lee, Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel, Materials Science and
Engineering A, 527 (2009) 157-161.
[14]Gutierrez-Urrutia and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–
22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Materialia, 59
(2011) 6449-6462.
[15] T. A. Lebedkina, M. A. Lebyodkin, J. P. Chateau, A. Jacques and S. Allain, On the mechanism of unstable
plastic flow in an austenitic FeMnC TWIP steel, Materials Science and Engineering A, 519 (2009) 147–154.
[16]Chung, K. Ahn, D. H. Yoo, K. H. Chung, M. H. Seo and S. H. Park, Formability of TWIP (twinning induced
plasticity) automotive sheets, International Journal of Plasticity, 27(2011) 52-81.
[17] X. Sun, A. Soulami, K. S. Choi, O. Guzman and W. Chen, Effects of sample geometry and loading rate on
tensile ductility of TRIP800 steel, Materials Science and Engineering A, 541 (2012) 1-7.
[18] P. Sahu, S. Curtze, A. Das, B. Mahato, K. V. T. and S. G. Chowdhury, Stability of austenite and quasi-adiabatic
heating during high strain-rate deformation of twinning-induced plasticity steels, Scripta Materialia, 62 (2010)
5-8.
[19]A. Khosravifard, M. M. Moshksar and R. Ebrahimi, High strain rate torsional testing of a high manganese steel:
Design and Simulation, Materials and Design, 52 (2013) 495-503.
[20]Khosravifard, M. M. Moshksar and R. Ebrahimi, Mechanical behavior of TWIP steel in high strain rate torsional
test, International Journal of Iron and Steel Society of Iran, 9 (2012) 15-19.
[21]Khosravifard, Influence of high strain rates on the mechanical behavior of high manganese steels, Iranian
Journal of Materials Forming, 1 (2014) 1-10.
[22]Khosravifard, A. S. Hamada, M. M. Moshksar, R. Ebrahimi, D. A. Porter and L. P. Karjalainen, High
temperature deformation behavior of two as-cast high-manganese TWIP steels, Materials Science &
Engineering A, 582 (2013) 15-21.
[23]G. Olson and M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCCHCP
transformation, Metallurgical and Materials Transactions A, 7 (1976). 1897-1904.
[24]G. Regazzoni, P. U. F. Kocks and P. S. Follansbee, Dislocation Kinetics at High Strain Rates, Acta
Metallurgica, 35 (1987) 2865-2875.
[25]R. G. Xiong, R. Y. Fu, Y. Su, Q. Li, W. X. C. and L. Li, Tensile properties of TWIP steel at high strain rate,
Journal of Iron and Steel Research, International, 16 (2009) 81-86.