[1] G.R. Johnson and W.H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, (1983) 541–543.
[2] E. Voce, The relationship between stress and strain for homogeneous deformation. J. Inst. Met., 74 (1948) 537–562.
[3] A.S. Khan and S. Huang, Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10−5− 104 s−1, Int. J. Plast., 8 (1992) 397–424.
[4] H. Mirzadeh and A. Najafizadeh, Flow stress prediction at hot working conditions, Mater. Sci. Eng. A, 527(2010) 1160–1164.
[5] Y.C. Lin and X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32 (2011) 1733–1759.
[6] H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani and R. Bolingbroke, Constitutive equations for high temperature flow stress of aluminium alloys, J. Mater. Sci. Technol., 13 (1997) 210-216.
[7] Y.C. Lin, M.S. Chen and J. Zhang, Constitutive modeling for elevated temperature flow behavior of 42CrMo steel, Comput Mater Sci, 424 (2008) 470–477.
[8] M.Y. Zhan, Z. Chen, H. Zhang and W. Xia, Flow stress behavior of porous FVS0812 aluminum alloy during hot-compression, Mech. Res. Commun., 33 (2006) 508–514.
[9] P.J. Zerilli and R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys., 61 (1987) 1816-1825.
[10] G.Z. Voyiadjis and A.H. Almasri, A physically based constitutive model for FCC metals with applications to dynamic hardness, Mech. Mater., 40 (2008) 549-563.
[11] Y.C. Lin, M.S. Chen and J. Zhang, Prediction of 42CrMo steel flow stress at high temperature and strain rate, Mech. Res.Commun., 35 (2008) 142–50.
[12] Y.C. Lin, X.M. Chen, D.X. Wen and M.S. Chen, A physically-based constitutive model for a typical nickel-based superalloy, Comput. Mater. Sci., 83(2014) 282–289.
[13] M. Rakhshkhorshid and S.A. TeimouriSendesi, Bayesian Regularization Neural Networks for Prediction of Austenite Formation Temperatures (Ac1 and Ac3), J. Iron Steel Res. Int., 21(2) (2014) 246 – 251.
[14] V. Senthilkumar and A. Balaji, D. Arulkirubakaran, Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite, Trans. Nonferrous Met. Soc. China, 23 (2013) 1737-1750.
[15] Y. Zhu, W. Zeng, Y. Sun, F. Feng and Y. Zhou, Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy, Comp. Mater. Sci., 50 (2011) 1785– 1790.
[16] H. Mirzadeh, J.M. Cabrera, J.M. Prado and A. Najafizadeh, Modeling and prediction of hot deformation flow curves, Metall. Mater. Trans. A, 43 (2012) 108–123.
[17] N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian and H.R. Abedi, Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy, Mater. Des., 49 (2013) 386-391.
[18] Y.C. Lin, X. Fang and Y.P. Wang, Prediction of metadynamic softening in a multi-pass hot deformed low alloy steel using artificial neural network, Mater. Sci., 43 (2008) 5508-5515.
[19] N.S. Reddy, Y.H. Lee, C.H. Park and C.S. Lee, Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed [alpha]+[beta] microstructure by artificial neural networks, Mater. Sci. Eng.A, 492 (2008) 276- 282.
[20] H.Y. Li, D.D. Wei, Y.H. Li and X.F. Wang, Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel, Mater. Des., 35 (2012) 557-562.
[21] S. Toros, F. Ozturk, Flow curve prediction of Al–Mg alloys under warm forming conditions at various strain rates by ANN, Appl. Soft. Comput., 110 (2011) 1891–1898.
[22] S. Mandal, P.V. Sivaprasad, S. Venugopal and K.P.N. Murthy, Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion, Appl. Soft. Comput., 9 (2009) 237–244.
[23] M. Rakhshkhorshid, Modeling the hot deformation flow curves of API X65 pipeline steel, Int. J. Adv. Manuf. Tech., 77 (2015) 203-210.
[24] M. Rakhshkhorshid and A.R. Maldar, A comparative study on constitutive modeling of hot deformation flow curves in AZ91 magnesium alloy, Iranian journal of materials Forming, 3(1) (2016) 27-37.
[25] M. Rakhshkhorshid and S.H. Hashemi, Experimental study of hot deformation behavior in API X65 steel, Mater. Sci. Eng. A, 573 (2013) 37–44.
[26] API Specifications 5L, Specifications for Line Pipe, 44th Edition, American Petroleum Institute, USA (2007).
[27] M.S. Ozerdem and S. Kolukisa, Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys, Mater. Des., 30 (2009), 764–769.
[28] M. Zounemat-kermani, O. Kisi and T. Rajaee, Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed run off, Appl. Soft. Comput., 13 (2013) 4633– 4644.
[29] S. Garg, S.K. Pal and D. Chakraborty, Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear, Neural Comput. &Applic., 16 (2007) pp. 407–417.
[30] .A. Mehrsai, H.R. Karimi, K.D. Thoben and B. Scholz-Reiter, Application of learning pallets for real- time scheduling by the use of radial basis function network, Neurocomputing, 101 (2013) 82–93.
[31] M. Rakhshkhorshid and S.H. Hashemi, Firefly algorithm assisted optimized NN to predict the elongation of API X65 pipeline steel, IJMMNO, 4(3) (2013), 238 – 251.
[32] MATLAB® software (2008) (Neural Network Toolbox, User's Guide)
[33] H. Sarnel and Y. Senol, Accurate and robust image registration based on radial basis neural networks, Neural Comput.&Applic., 20 (2011) 1255–1262.