[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in materials science 45(2) (2000) 103-189.
[2] V. Segal, V. Reznikov, A. Dobryshevshiy, V. Kopylov, Plastic working of metals by simple shear, Russian Metallurgy (Metally) (1) (1981) 99-105.
[3] A.R. Eivani, A.K. Taheri, A new method for producing bimetallic rods, Materials Letters 61(19-20) (2007) 4110-4113.
[4] A.R. Eivani, A.K. Taheri, A new method for estimating strain in equal channel angular extrusion, Journal of Materials Processing Technology 183(1) (2007) 148-153.
[5] A.R. Eivani, A.K. Taheri, An upper bound solution of ECAE process with outer curved corner, Journal of Materials Processing Technology 182(1-3) (2007) 555-563.
[6] A. Eivani, A.K. Taheri, The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion, Computational Materials Science 42(1) (2008) 14-20.
[7] A.R. Eivani, A.K. Taheri, The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion, Computational Materials Science 42(1) (2008) 14-20.
[8] M. Kazeminezhad, Simulation the ultra-fine microstructure evolution during annealing of metal processed by ECAP, Computational Materials Science 43(2) (2008) 309-312.
[9] M. Kazeminezhad, E. Hosseini, Coupling kinetic dislocation model and Monte Carlo algorithm for recrystallized microstructure modeling of severely deformed copper, Journal of Materials Science 43(18) (2008) 6081-6086.
[10] M. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T. Dean, Consolidation of Al particles through forward extrusion-equal channel angular pressing (FE-ECAP), Materials letters 62(17-18) (2008) 3266-3268.
[11] M. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T. Dean, Equal channel angular pressing–forward extrusion (ECAP–FE) consolidation of Al particles, Materials & Design 30(3) (2009) 429-432.
[12] M.H. Paydar, M. Reihanian, R. Ebrahimi, T.A. Dean, M.M. Moshksar, An upper-bound approach for equal channel angular extrusion with circular cross-section, Journal of Materials Processing Technology 198(1-3) (2008) 48-53.
[13] M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, N. Tsuji, Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP), Materials Characterization 59(9) (2008) 1312-1323.
[14] M. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar, Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP), Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 473(1-2) (2008) 189-194.
[15] S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP, Journal of Alloys and Compounds 466(1-2) (2008) 67-72.
[16] M.R.M. Garabagh, S.H. Nedjad, M.N. Ahmadabadi, X-ray diffraction study on a nanostructured 18Ni maraging steel prepared by equal-channel angular pressing, Journal of Materials Science 43(21) (2008) 6840-6847.
[17] M.R.M. Garabagh, S.H. Nedjad, H. Shirazi, M.I. Mobarekeh, M.N. Ahmadabadi, X-ray diffraction peak profile analysis aiming at better understanding of the deformation process and deformed structure of a martensitic steel, Thin Solid Films 516(22) (2008) 8117-8124.
[18] H. Meidani, S.H. Nedjad, M.N. Ahmadabadi, A Novel Process for Fabrication of Globular Structure by Equal Channel Angular Pressing and Isothermal Treatment of Semisolid Metal, Semi-Solid Processing of Alloys and Composites Xed., G. Hirt, A. Rassili, A. BuhrigPolaczek, Eds., 2008, pp 445-450.
[19] M.I. Mobarake, M. Nili-Ahmadabadi, B. Poorganji, A. Fatehi, H. Shirazi, T. Furuhara, H. Parsa, S.H. Nedjad, Microstructural study of an age hardenable martensitic steel deformed by equal channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 491(1-2) (2008) 172-176.
[20] M. Moradi, M. Nili-Ahmadabadi, B. Heidarian, M.H. Parsa, Study of ECAP Processing Routes on Semi-solid Microstructure Evolution of A356 Alloy, Semi-Solid Processing of Alloys and Composites Xed., G. Hirt, A. Rassili, A. BuhrigPolaczek, Eds., 2008, pp 397-402.
[21] S.H. Nedjad, H. Meidania, M.N. Ahmadabadi, Effect of equal channel angular pressing on the microstructure of a semisolid aluminum alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 475(1-2) (2008) 224-228.
[22] M.H. Parsa, M. Naderi, M. Nili-Ahmadabadi, H. Asadpour, The Evolution of Strain during Equal Channel Angular Pressing, International Journal of Material Forming 1 (2008) 93-96.
[23] R. Mahmudi, H. Mhjoubi, P. Mehraram, Superplastic indentation creep of fine-grained Sn-1% Bi alloy, International Journal of Modern Physics B 22(18-19) (2008) 2823-2832.
[24] M. Hoseini, M. Meratian, H.L. Li, J.A. Szpunar, Texture simulation of aluminum rod during equal channel angular pressing, Journal of Materials Science 43(13) (2008) 4561-4566.
[25] M. Hoseini, M. Meratian, M.R. Toroghinejad, J.A. Szpunar, Texture contribution in grain refinement effectiveness of different routes during ECAP, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 497(1-2) (2008) 87-92.
[26] A. Zirulnick, Sanction Qaddafi? How 5 nations have reacted to sanctions., The Christian Science Monitored., FEBRUARY 24, 2011
[27] S. Saeidnia, M. Abdollahi, Consequences of International Sanctions on Iranian Scientists and the Basis of Science, Hepatitis Monthly 13(9) (2013) e14843.
[28] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta materialia 39(9) (1998) 1221-1227.
[29] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51(7) (2006) 881-981.
[30] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39.
[31] I.J. Beyerlein, L.S. Tóth, Texture evolution in equal-channel angular extrusion, Progress in Materials Science 54(4) (2009) 427-510.
[32] R.B. Figueiredo, T.G. Langdon, Fabricating Ultrafine-Grained Materials through the Application of Severe Plastic Deformation: a Review of Developments in Brazil, Journal of Materials Research and Technology 1(1) (2012) 55-62.
[33] M. Kawasaki, T.G. Langdon, Review: achieving superplastic properties in ultrafine-grained materials at high temperatures, Journal of Materials Science 51(1) (2015) 19-32.
[34] A. Eivani, A.K. Taheri, A new method for producing bimetallic rods, Materials Letters 61(19-20) (2007) 4110-4113.
[35] B. Tolaminejad, F. Brisset, T. Baudin, Iop, EBSD study of the microstructure evolution in a commercially pure aluminium severely deformed by ECAP, Emas 2011: 12th European Workshop on Modern Developments in Microbeam Analysised., 2012
[36] B. Tolaminejad, K. Dehghani, Microstructural characterization and mechanical properties of nanostructured AA1070 aluminum after equal channel angular extrusion, Materials & Design 34 (2012) 285-292.
[37] M. Hoseini, M. Meratian, M.R. Toroghinejad, J.A. Szpunar, The role of grain orientation in microstructure evolution of pure aluminum processed by equal channel angular pressing, Materials Characterization 61(12) (2010) 1371-1378.
[38] F. Djavanroodi, M. Ebrahimi, B. Rajabifar, S. Akramizadeh, Fatigue design factors for ECAPed materials, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 528(2) (2010) 745-750.
[39] F. Djavanroodi, B. Omranpour, M. Ebrahimi, M. Sedighi, Designing of ECAP parameters based on strain distribution uniformity, Progress in Natural Science-Materials International 22(5) (2012) 452-460.
[40] F. Djavanroodi, H. Ahmadian, K. Koohkan, R. Naseri, Ultrasonic assisted-ECAP, Ultrasonics 53(6) (2013) 1089-1096.
[41] M. Moradi, M. Nili-Ahmadabadi, B. Poorganji, B. Heidarian, M.H. Parsa, T. Furuhara, Recrystallization behavior of ECAPed A356 alloy at semi-solid reheating temperature, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(16-17) (2010) 4113-4121.
[42] M. Moradi, M. Nili-Ahmadabadi, B. Heidarian, IMPROVEMENT OF MECHANICAL PROPERTIES OF AL (A356) CAST ALLOY PROCESSED BY ECAP WITH DIFFERENT HEAT TREATMENTS, International Journal of Material Forming 2 (2009) 85-88.
[43] M. Moradi, M. Nili-Ahmadabadi, B. Poorganji, B. Heidarian, T. Furuhara, EBSD and DTA Characterization of A356 Alloy Deformed by ECAP During Reheating and Partial Re-melting, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 45A(3) (2014) 1540-1551.
[44] M.R. Roshan, S.A.J. Jahromi, R. Ebrahimi, Predicting the critical pre-aging time in ECAP processing of age-hardenable aluminum alloys, Journal of Alloys and Compounds 509(30) (2011) 7833-7839.
[45] M.H. Goodarzy, H. Arabi, M.A. Boutorabi, S.H. Seyedein, S.H.H. Najafabadi, The effects of room temperature ECAP and subsequent aging on mechanical properties of 2024 Al alloy, Journal of Alloys and Compounds 585 (2014) 753-759.
[46] M. Vaseghi, A.K. Taheri, H.S. Kim, An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum Al6061 alloy, 6th International Conference on Nanomaterials by Severe Plastic Deformationed., B. Beausir, O. Bouaziz, E. Bouzy, T. Grosdidier, L.S. Toth, Eds., 2014
[47] M. Vaseghi, A.K. Taheri, S.I. Hong, H.S. Kim, Dynamic ageing and the mechanical response of Al-Mg-Si alloy through equal channel angular pressing, Materials & Design 31(9) (2010) 4076-4082.
[48] A. Shokuhfar, O. Nejadseyfi, The Influence of Friction on the Processing of Ultrafine-Grained/Nanostructured Materials by Equal-Channel Angular Pressing, Journal of Materials Engineering and Performance 23(3) (2014) 1038-1048.
[49] O. Nejadseyfi, A. Shokuhfar, A. Dabiri, A. Azimi, Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy, Journal of Alloys and Compounds 648 (2015) 912-918.
[50] A. Shokuhfar, O. Nejadseyfi, A comparison of the effects of severe plastic deformation and heat treatment on the tensile properties and impact toughness of aluminum alloy 6061, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 594 (2014) 140-148.
[51] O. Nejadseyfi, A. Shokuhfar, A. Azimi, M. Shamsborhan, Improving homogeneity of ultrafine-grained/nanostructured materials produced by ECAP using a bevel-edge punch, Journal of Materials Science 50(3) (2015) 1513-1522.
[52] A.A. Khamei, K. Dehghani, Hot Ductility of Severe Plastic Deformed AA6061 Aluminum Alloy, Acta Metallurgica Sinica-English Letters 28(3) (2015) 322-330.
[53] A.A. Khamei, K. Dehghani, R. Mahmudi, Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation, Jom 67(5) (2015) 966-972.
[54] M. Vaseghi, H.S. Kim, A.K. Taheri, A. Momeni, Inhomogeneity Through Warm Equal Channel Angular Pressing, Journal of Materials Engineering and Performance 22(6) (2013) 1666-1671.
[55] H. Alihosseini, M.A. Zaeem, K. Dehghani, G. Faraji, Producing high strength aluminum alloy by combination of equal channel angular pressing and bake hardening, Materials Letters 140 (2015) 196-199.
[56] Y.B. Asl, M. Meratian, A. Emamikhah, R.M. Homami, A. Abbasi, Mechanical properties and machinability of 6061 aluminum alloy produced by equal-channel angular pressing, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture 229(8) (2015) 1302-1313.
[57] A. Khamei, K. Dehghani, S. Bakhshi, K. Kalayeh, Hot and Cold Tensile Behavior of Al 6061 Produced By Equal Channel Angular Pressing and Subsequent Cold Rolling,
[58] B. Mirzakhani, Y. Payandeh, Combination of sever plastic deformation and precipitation hardening processes affecting the mechanical properties in Al-Mg-Si alloy, Materials & Design 68 (2015) 127-133.
[59] J. Nemati, G.H. Majzoobi, S. Sulaiman, B. Baharudin, M.A.A. Hanim, Effect of equal channel angular extrusion on Al-6063 bending fatigue characteristics, International Journal of Minerals Metallurgy and Materials 22(4) (2015) 395-404.
[60] S. Dadbakhsh, A.K. Taheri, C.W. Smith, Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(18-19) (2010) 4758-4766.
[61] M. Vaseghi, H.S. Kim, A combination of severe plastic deformation and ageing phenomena in Al-Mg-Si Alloys, Materials & Design 36 (2012) 735-740.
[62] S. Mohammadi, M. Irani, A.K. Taheri, The effects of combination of severe plastic deformation and Shot Peening surface treatment on fatigue behavior of 6082 aluminum alloy, Russian Journal of Non-Ferrous Metals 56(2) (2015) 206-211.
[63] M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, J.K. Park, Characterization of microstructure and deformation texture during equal channel Angular pressing of Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds 576 (2013) 350-357.
[64] M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, J.K. Park, Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Materials & Design 57 (2014) 250-257.
[65] M.H. Shaeri, M. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, Effect of equal channel angular pressing on aging treatment of Al-7075 alloy, Progress in Natural Science-Materials International 25(2) (2015) 159-168.
[66] M.H. Shaeri, M. Shaeri, M.T. Salehi, S.H. Seyyedein, F. Djavanroodi, Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing, Transactions of Nonferrous Metals Society of China 25(5) (2015) 1367-1375.
[67] D. Azimi-Yancheshmeh, M. Aghaie-Khafri, Study of Semisolid and ECAP Processes on Al-Fe-Si Alloy - Microstructure and Kinetic Grain growth, Diffusion in Solids and Liquids Vi, Pts 1 and 2ed., A. Ochsner, G.E. Murch, J.M.P. Delgado, Eds., 2011, pp 166-171.
[68] N. Tabatabaei, A.K. Taheri, M. Vaseghi, Dynamic strain aging of a commercial Al-Mg-Si-Cu alloy during equal channel angular extrusion process, Journal of Alloys and Compounds 502(1) (2010) 59-62.
[69] M. Aghaie-Khafri, D. Azimi-Yancheshme, The Study of an Al-Fe-Si Alloy After Equal-Channel Angular Pressing (ECAP) and Subsequent Semisolid Heating, Jom 64(5) (2012) 585-592.
[70] G. Khalaj, M.J. Khalaj, A. Nazari, Microstructure and hot deformation behavior of AlMg6 alloy produced by equal-channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 542 (2012) 15-20.
[71] R. Haghayeghi, P. Kapranos, An investigation on work hardening of Al-1%Mg processed by Equal Channel Angular Pressing, Materials Letters 129 (2014) 182-184.
[72] S.R. Bahadori, K. Dehghani, F. Bakhshandeh, Microstructural homogenization of ECAPed copper through post-rolling, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 588 (2013) 260-264.
[73] S.R. Bahadori, K. Dehghani, F. Bakhshandeh, Microstructure, texture and mechanical properties of pure copper processed by ECAP and subsequent cold rolling, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 583 (2013) 36-42.
[74] S.R. Bahadori, K. Dehghani, Influence of Intermediate Annealing on the Nanostructure and Mechanical Properties of Pure Copper Processed by Equal Channel Angular Pressing and Cold Rolling, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46A(7) (2015) 2796-2802.
[75] S.R. Bar Bahadori, K. Dehghani, S. Mousavi, Comparison of microstructure and mechanical properties of pure copper processed by twist extrusion and equal channel angular Pressing, Materials Letters 152 (2015) 48-52.
[76] J. Nemati, G.H. Majzoobi, S. Sulaiman, B. Baharudin, M.A.A. Hanim, Finite element and metallurgical study of properties of deformed pure copper by ECAE at various strain rates, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 228(9) (2014) 1461-1473.
[77] J. Nemati, G.H. Majzoobi, S. Sulaiman, B. Baharudin, M.A.A. Hanim, Improvements in the microstructure and fatigue behavior of pure copper using equal channel angular extrusion, International Journal of Minerals Metallurgy and Materials 21(6) (2014) 569-576.
[78] F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, M. Hoseini, J.A. Szpunar, Textural evaluation of copper produced by equal channel angular pressing with routes A and B-30, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(23) (2010) 6260-6269.
[79] F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, M. Hoseini, J.A. Szpunar, Investigation of texture and mechanical properties of copper processed by new route of equal channel angular pressing, Materials & Design 44 (2013) 374-381.
[80] F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, M. Jafari, EBSD analysis of nano-structured copper processed by ECAP, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 528(16-17) (2011) 5348-5355.
[81] O. Nejadseyfi, A. Shokuhfar, V.Moodi, Segmentation of copper alloys processed by equal-channel angular pressing, Transactions of Nonferrous Metals Society of China 25(8) (2015) 2571-2580.
[82] S.H. Nedjad, F.H. Nasab, M.R.M. Garabagh, S.R. Damadi, M.N. Ahmadabadi, X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 42A(8) (2011) 2493-2497.
[83] F. Hajiakbari, M. Nili-Ahmadabadi, B. Poorganji, T. Furuhara, Control of austenite to martensite transformation through equal channel angular pressing aided by thermodynamic calculations, Acta Materialia 58(8) (2010) 3073-3078.
[84] M. Nili-Ahmadabadi, F.H. Akbari, F. Rad, Z. Karimi, M. Iranpour, B. Poorganji, T. Furuhara, Microstructural Evolution of Bainitic Steel Severely Deformed by Equal Channel Angular Pressing, Journal of Nanoscience and Nanotechnology 10(9) (2010) 5986-5993.
[85] M. Nili-Ahmadabadi, H. Shirazi, M.I. Mobarake, B. Poorganji, S.H. Nedjad, T. Furuhara, Mechanical Properties Evaluations of an Age Hardenable Martensitic Steel Deformed by Equal Channel Angular Pressing, Journal of Nanoscience and Nanotechnology 10(9) (2010) 6182-6185.
[86] H. Shirazi, M. Nili-Ahmadabadi, A. Fatehi, S.H. Nedjad, Effect of Severe Plastic Deformation on Mechanical Properties of Fe-Ni-Mn High Strength Steel, Advances in Materials and Processing Technologies, Pts 1 and 2ed., M.S.J. Hashmi, B.S. Yilbas, S. Naher, Eds., 2010, pp 16-23.
[87] E. Bagherpour, M. Reihanian, R. Ebrahimi, On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel, Materials & Design 36 (2012) 391-395.
[88] N. Forouzanmehr, N. Nili-Ahmadabadi, On the atomic force microscopy characterization of void evolution in severely plastic deformed pure iron, 6th International Conference on Nanomaterials by Severe Plastic Deformationed., B. Beausir, O. Bouaziz, E. Bouzy, T. Grosdidier, L.S. Toth, Eds., 2014
[89] M. Toofaninejad, M.N. Ahmadabadi, Effect of equal channel angular pressing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel, Ultrafine Grained and Nano-Structured Materials Ived., M.H. Parsa, Ed., 2014, pp 86-90.
[90] K. Hajizadeh, H. Maleki-Ghaleh, A. Arabi, Y. Behnamian, E. Aghaie, A. Farrokhi, M.G. Hosseini, M.H. Fathi, Corrosion and biological behavior of nanostructured 316L stainless steel processed by severe plastic deformation, Surface and Interface Analysis 47(10) (2015) 978-985.
[91] H. Maleki-Ghaleh, K. Hajizadeh, E. Aghaie, S.G. Alamdari, M.G. Hosseini, M.H. Fathi, K. Ozaltin, K.J. Kurzydlowski, Effect of Equal Channel Angular Pressing Process on the Corrosion Behavior of Type 316L Stainless Steel in Ringer's Solution, Corrosion 71(3) (2015) 367-375.
[92] M. Hoseini, A. Shahryari, S. Omanovic, J.A. Szpunar, Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing, Corrosion Science 51(12) (2009) 3064-3067.
[93] K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP a warm deformation region, Materials Chemistry and Physics 143(3) (2014) 1032-1038.
[94] K. Hajizadeh, S.G. Alamdari, B. Eghbali, Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation, Physica B-Condensed Matter 417 (2013) 33-38.
[95] K. Hajizadeh, B. Eghbali, Effect of two-step severe plastic deformation on the microstructure and mechanical properties of commercial purity titanium, Metals and Materials International 20(2) (2014) 343-350.
[96] H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S.G. Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, K.J. Kurzydlowski, Electrochemical and cellular behavior of ultrafine-grained titanium in vitro, Materials Science & Engineering C-Materials for Biological Applications 39 (2014) 299-304.
[97] C. Gode, S. Attarilar, B. Eghali, M. Ebrahimi, Electrochemical Behavior of Equal Channel Angular Pressed Titanium for Biomedical Application, 4th International Congress in Advances in Applied Physics and MaterialsScienceed., A.Y. Oral, Z.B. Bahsi, M. Ozer, M. Sezer, M.E. Akoz, Eds., 2015
[98] F. Ahmadi, M. Farzin, M. Meratian, S.M. Loeian, M.R. Forouzan, Improvement of ECAP process by imposing ultrasonic vibrations, International Journal of Advanced Manufacturing Technology 79(1-4) (2015) 503-512.
[99] S.M. Masoudpanah, R. Mahmudi, Effects of rare-earth elements and Ca additions on the microstructure and mechanical properties of AZ31 magnesium alloy processed by ECAP, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 526(1-2) (2009) 22-30.
[100] S.M. Masoudpanah, R. Mahmudi, Effects of rare earth elements and Ca additions on high temperature mechanical properties of AZ31 magnesium alloy processed by ECAP, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(16-17) (2010) 3685-3689.
[101] S.M. Masoudpanah, R. Mahmudi, The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing, Materials & Design 31(7) (2010) 3512-3517.
[102] Y. Radi, R. Mahmudi, Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(10-11) (2010) 2764-2771.
[103] S.M. Masoudpanah, R. Mahmudi, T.G. Langdon, Correlation between shear punch and tensile measurements for an AZ31 Mg alloy processed by equal-channel angular pressing, Kovove Materialy-Metallic Materials 49(1) (2011) 43-50.
[104] S.A. Torbati-Sarraf, R. Mahmudi, Microstructure and mechanical properties of extruded and ECAPed AZ31 Mg alloy, grain refined with Al-Ti-C master alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(15) (2010) 3515-3520.
[105] F. Fereshteh-Saniee, F. Akbaripanah, H.K. Kim, R. Mahmudi, Effects of extrusion and equal channel angular pressing on the microstructure, tensile and fatigue behaviour of the wrought magnesium alloy AZ80, Fatigue & Fracture of Engineering Materials & Structures 35(12) (2012) 1167-1172.
[106] F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H.K. Kim, The influences of extrusion and equal channel angular pressing (ECAP) processes on the fatigue behavior of AM60 magnesium alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 565 (2013) 308-316.
[107] F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H.K. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Materials & Design 43 (2013) 31-39.
[108] R. Jahadi, M. Sedighi, H. Jahed, ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 593 (2014) 178-184.
[109] M. Karami, R. Mahmudi, Shear punch superplasticity in equal-channel angularly pressed Mg-12Li-1Zn alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 576 (2013) 156-159.
[110] M. Sarebanzadeh, R. Roumina, R. Mahmudi, G.H. Wu, H.R.J. Nodooshan, Enhancement of superplasticity in a fine-grained Mg-3Gd-1Zn alloy processed by equal-channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 646 (2015) 249-253.
[111] S.R. Motlagh, M.H. Maghsoudi, S. Serajzadeh, Softening behaviour of alumina reinforced copper processed by equal channel angular pressing, Materials Science and Technology 30(2) (2014) 220-226.
[112] H. Monshat, S. Serajzadeh, J.M. Akhgar, A. Kamankesh, Effect of strain path change on mechanical properties and final microstructure of Cu-Al2O3 in equal channel angular pressing, Materials Science and Technology 29(2) (2013) 210-218.
[113] R. Derakhshandeh, A.J. Jahromi, An investigation on the capability of equal channel angular pressing for consolidation of aluminum and aluminum composite powder, Materials & Design 32(6) (2011) 3377-3388.
[114] R.D. Haghighi, S.A.J. Jahromi, A. Moresedgh, M.T. Khorshid, A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite, Journal of Materials Engineering and Performance 21(9) (2012) 1885-1892.
[115] R.D. Haghighi, Effect of ECAP and extrusion on particle distribution in Al-nano-Al2O3 composite, Bulletin of Materials Science 38(5) (2015) 1205-1212.
[116] A. Hassani, M. Zabihi, High strain rate superplasticity in a nano-structured Al-Mg/SiCP composite severely deformed by equal channel angular extrusion, Materials & Design 39 (2012) 140-150.
[117] I. Sadeghi, S. Serajzadeh, Mechanical behavior during aging of plastically deformed AA6061-SiCp composite in different temperatures, Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications 226(L4) (2012) 322-329.
[118] S. Mirab, M. Nili-Ahmadabadi, On the flow and mechanical behavior of Al matrix composite reinforced by nickel based (90% Ni-10% Cr) wires during equal channel angular pressing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 583 (2013) 43-51.
[119] P. Eslami, A.K. Taheri, An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process, Materials Letters 65(12) (2011) 1862-1864.
[120] M. Zebardast, A.K. Taheri, The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process, Journal of Materials Processing Technology 211(6) (2011) 1034-1043.
[121] P. Eslami, A.K. Taheri, M. Zebardast, A Comparison Between Cold-Welded and Diffusion-Bonded Al/Cu Bimetallic Rods Produced by ECAE Process, Journal of Materials Engineering and Performance 22(10) (2013) 3014-3023.
[122] R. Mahmudi, R. Alizadeh, A.R. Geranmayeh, Enhanced superplasticity in equal-channel angularly pressed Sn-5Sb alloy, Scripta Materialia 64(6) (2011) 521-524.
[123] R. Mahmudi, R. Alizadeh, S. Azhari, Strain rate sensitivity of equal-channel angularly pressed Sn-5Sb alloy determined by shear punch test, Materials Letters 97 (2013) 44-46.
[124] M.H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, A. Zarinejad, T.A. Dean, Consolidation of Al particles through forward extrusion-equal channel angular pressing (FE-ECAP), Materials Letters 62(17-18) (2008) 3266-3268.
[125] M.H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T.A. Dean, Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles, Materials & Design 30(3) (2009) 429-432.
[126] H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani, T.G. Langdon, The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 576 (2013) 178-184.
[127] H. Shahmir, M. Nili-Ahmadabadi, T.G. Langdon, Shape memory effect of NiTi alloy processed by equal-channel angular pressing followed by post deformation annealing, 6th International Conference on Nanomaterials by Severe Plastic Deformationed., B. Beausir, O. Bouaziz, E. Bouzy, T. Grosdidier, L.S. Toth, Eds., 2014
[128] H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani, A. Khajezade, T.G. Langdon, Evaluating a New Core-Sheath Procedure for Processing Hard Metals by Equal-Channel Angular Pressing, Advanced Engineering Materials 16(7) (2014) 918-926.
[129] H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani, A. Khajezade, T.G. Langdon, Evaluating the Room Temperature ECAP Processing of a NiTi Alloy via Simulation and Experiments, Advanced Engineering Materials 17(4) (2015) 532-538.
[130] H. Shahmir, M. Nili-Ahmadabadi, A. Razzaghi, M. Mohammadi, C.T. Wang, J.M. Jung, H.S. Kim, T.G. Langdon, Using dilatometry to study martensitic stabilization and recrystallization kinetics in a severely deformed NiTi alloy, Journal of Materials Science 50(11) (2015) 4003-4011.
[131] H. Shahmir, M. Nili-Ahmadabadi, C.T. Wang, J.M. Jung, H.S. Kim, T.G. Langdon, Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing at room temperature, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 629 (2015) 16-22.
[132] A.Q. Fan, L.Y. Zhou, C.H. Deng, L.Y. Zhu, Research and development of ultra-fine grain technology with equal channel angular extrusion processing, Journal of Iron and Steel Research 24(7) (2012)
[133] M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Processing of metals by equal-channel angular pressing, Journal of Materials Science 36(12) (2001) 2835-2843.
[134] L.M. Lei, X. Huang, R. Duan, C.X. Cao, Progress in equal channel angular extrusion process, Cailiao Gongcheng/Journal of Materials Engineering (5) (2009) 76-80.
[135] R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer, Y. Zhu, Fundamentals of superior properties in bulk nanoSPD materials, Materials Research Letters 4(1) (2016) 1-21.
[136] C.P. Hong, J. Kim, Development of an advanced rheocasting process and its applications, Solid State Phenomena 116 (2006), pp 44-53.
[137] J. Jiang, Y. Wang, S. Luo, Application of equal channel angular extrusion to semi-solid processing of magnesium alloy, Materials Characterization 58(2) (2007) 190-196.
[138] S. Liang, R.S. Chen, E.H. Han, Semisolid microstructural evolution of equal channel angular extruded Mg-Al alloy during partial remelting, Solid State Phenomena 141 (2008), pp 557-562.
[139] M. Kubota, X. Wu, W. Xu, K. Xia, Mechanical properties of bulk aluminium consolidated from mechanically milled particles by back pressure equal channel angular pressing, Materials Science and Engineering: A 527(24–25) (2010) 6533-6536.
[140] S. XIANG, K. MATSUKI, N. TAKATSUJI, M. TOKIZAWA, T. YOKOTE, J. KUSUI, K. YOKOE, Microstructure and mechanical properties of PM 2024Al-3Fe-5Ni alloy consolidated by a new process, equal channel angular pressing, Journal of Materials Science Letters 16(21) (1997) 1725-1727.
[141] K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, K. Yokoe, Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing, Acta Materialia 48(10) (2000) 2625-2632.
[142] X.L. Wu, K. Xia, Synthesis of bulk materials by equal channel angular consolidation of particles, Materials Science Forum 503 (2006), pp 233-238.
[143] K.T. Hartwig, H. Zapata, A. Parasiris, S.N. Mathaudhu, Consolidation of metallic powders by equal channel angular extrusion, Powder Materials: Current Research and Industrial Practices (2001), pp 211-221.
[144] K. Elkhodary, H. Salem, M. Zikry, Equal channel angular pressing of canned 2124-Al compacts: processing, experiments, and modeling, Metallurgical and Materials Transactions A 39(9) (2008) 2184-2192.
[145] K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, Microstructure and mechanical properties of 2024Al-Fe-Ni PM alloys consolidated by equal channel angular pressing, Materials science forum 331 (2000), pp 1215-1220.
[146] I. Baker, D. Iliescu, Y. Liao, Containerless consolidation of Mg powders using ECAE, Materials and Manufacturing Processes 25(12) (2010) 1381-1384.
[147] H.C. Lee, C.G. Chao, T.F. Liu, C.Y. Lin, H.C. Wang, Effect of temperature and extrusion pass on the consolidation of magnesium powders using equal channel angular extrusion, Materials Transactions 54(5) (2013) 765-768.
[148] M.S.S. Saravanan, S.P.K. Babu, K. Sivaprasad, B. Ravisankar, P. Susila, B.S. Murty, Consolidation of CNT-reinforced AA4032 nanocomposites by ECAP, International Journal of Nanoscience 10(1-2) (2011) 233-236.
[149] A. Parasiris, K.T. Hartwig, Consolidation of advanced WC–Co powders, International Journal of Refractory Metals and Hard Materials 18(1) (2000) 23-31.
[150] A. Parasiris, K. Hartwig, M. Srinivasan, Formation/consolidation of WC-Co cermets by simple shear, Scripta materialia 42(9) (2000) 875-880.
[151] C. Haase, R. Lapovok, H.P. Ng, Y. Estrin, Production of Ti–6Al–4V billet through compaction of blended elemental powders by equal-channel angular pressing, Materials Science and Engineering: A 550 (2012) 263-272.
[152] X. Kaculi, M.N. Srinivasan, K.T. Hartwig, Use of High Intensity Milling and Equal Channel Angular Extrusion to Produce and Consolidate Nanostructured Titanium Silicide, ASME 2003 International Mechanical Engineering Congress and Exposition (2003), pp 871-877.
[153] M. Haouaoui, I. Karaman, Nanostructured Bulk Cu Obtained by Consolidation of Cu Particles Using Equal Channel Angular Extrusion, Powder Materials: Current Research and Industrial Practices IIIed., John Wiley & Sons, Inc., 2010, pp 125-138.
[154] A.V. Nagasekhar, Y. Tick-Hon, K.S. Ramakanth, Mechanics of single pass equal channel angular extrusion of powder in tubes, Applied Physics A 85(2) (2006) 185-194.
[155] K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, L.J. Kecskes, Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion, Acta Materialia 76 (2014) 168-185.
[156] O. Senkov, J. Scott, S. Senkova, D. Miracle, ECAE consolidation of amorphous aluminum alloy powders, International Symposium on Processing and Fabrication of Advanced Materials XII, TS Srivatsan and RA Varin (Eds.) ASM International, Materials Park, OH (2004), pp 346-357.
[157] J. Robertson, J.T. Im, I. Karaman, K.T. Hartwig, I.E. Anderson, Consolidation of amorphous copper based powder by equal channel angular extrusion, Journal of Non-Crystalline Solids 317(1–2) (2003) 144-151.
[158] P. Quang, Y. Jeong, S. Yoon, S. Hong, H. Kim, Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, Journal of materials processing Technology 187 (2007) 318-320.
[159] Q. Pham, Y.G. Jeong, S.H. Hong, H.S. Kim, Equal channel angular pressing of carbon nanotube reinforced metal matrix nanocomposites, Key Engineering Materials 326 (2006), pp 325-328.
[160] S.C. Yoon, H.S. Kim, Equal channel angular pressing of metallic powders for nanostructured materials, Materials Science Forum 503 (2006), pp 221-226.
[161] R.D. Haghighi, Effect of ECAP and extrusion on particle distribution in Al-nano–Al2O3 composite, Bulletin of Materials Science 38(5) (2015) 1205-1212.
[162] R. Casati, A. Fabrizi, A. Tuissi, K. Xia, M. Vedani, ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al2O3 nanoparticles, Materials Science and Engineering: A 648 (2015) 113-122.
[163] M. Balog, P. Yu, M. Qian, M. Behulova, P. Svec Sr, R. Cicka, Nanoscaled Al–AlN composites consolidated by equal channel angular pressing (ECAP) of partially in situ nitrided Al powder, Materials Science and Engineering: A 562 (2013) 190-195.
[164] C. Poletti, M. Balog, T. Schubert, V. Liedtke, C. Edtmaier, Production of titanium matrix composites reinforced with SiC particles, Composites Science and Technology 68(9) (2008) 2171-2177.
[165] E.W. Lui, W. Xu, K. Xia, Nanostructured dual phase Ti-Al through consolidation of particles by severe plastic deformation, Materials Science Forum, 2011, p 63-68.
[166] E.W. Lui, W. Xu, X. Wu, K. Xia, Multiscale two-phase Ti–Al with high strength and plasticity through consolidation of particles by severe plastic deformation, Scripta Materialia 65(8) (2011) 711-714.
[167] R. Yarra, P. Venkatachalam, S. Ramesh Kumar, B. Ravisankar, K. Jayasankar, P.S. Mukherjee, Densification of Al-Y2O3 composite powder by equal channel angular pressing, Transactions of the Indian Institute of Metals 63(5) (2010) 813-817.
[168] S.E. Hernández-Martínez, J.J. Cruz-Rivera, R. Martínez-Sánchez, C.G. Garay-Reyes, J.A. Muñoz-Bolaños, J.M. Cabrera, J.L. Hernández-Rivera, Consolidation of AA 7075-2 wt% ZrO2 Composite Powders by Severe Plastic Deformation via ECAP, Acta Metallurgica Sinica (English Letters) 29(10) (2016) 895-901.
[169] R. Derakhshandeh-Haghighi, S.A. Jenabali Jahromi, The Effect of Multi-pass Equal-Channel Angular Pressing (ECAP) for Consolidation of Aluminum-Nano Alumina Composite Powder on Wear Resistance, Journal of Materials Engineering and Performance 25(2) (2016) 687-696.
[170] K. Xia, X. Wu, Back pressure equal channel angular consolidation of pure Al particles, Scripta Materialia 53(11) (2005) 1225-1229.
[171] K. Xia, X. Wu, T. Honma, S.P. Ringer, Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles, Journal of Materials Science 42(5) (2007) 1551-1560.
[172] M. Kubota, X. Wu, W. Xu, K. Xia, Bulk Al materials from back pressure equal channel angular consolidation of mechanically milled particles, Materials Science Forum, 2008, p 428-433.
[173] X. Wu, W. Xu, K. Xia, Pure aluminum with different grain size distributions by consolidation of particles using equal-channel angular pressing with back pressure, Materials Science and Engineering A 493(1-2) (2008) 241-245.
[174] M. Moss, R. Lapovok, C.J. Bettles, The equal channel angular pressing of magnesium and magnesium alloy powders, JOM 59(8) (2007) 54-57.
[175] X. Wu, W. Xu, M. Kubota, K. Xia, Bulk Mg produced by back pressure equal channel angular consolidation (BP- ECAC), Materials Science Forum, 2008, p 114-118.
[176] X. Wu, K. Xia, Back pressure equal channel angular consolidation—Application in producing aluminium matrix composites with fine flyash particles, Journal of Materials Processing Technology 192–193 (2007) 355-359.
[177] W. Xu, X. Wu, T. Honma, S.P. Ringer, K. Xia, Nanostructured Al–Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing, Acta Materialia 57(14) (2009) 4321-4330.
[178] S. Goussous, W. Xu, X. Wu, K. Xia, Al–C nanocomposites consolidated by back pressure equal channel angular pressing, Composites Science and Technology 69(11–12) (2009) 1997-2001.
[179] A.V. Nagasekhar, Y. Tick-Hon, H.P. Seow, Influence of equal channel angular extrusion processing routes on consolidation of intermetallics, TMS Annual Meeting 2006 (2006), pp 203-208.
[180] W. Xu, X. Wu, D. Sadedin, K. Xia, Equal channel angular consolidation and deformation of titanium based alloys, Materials Forum 32 (2007) 29-34.
[181] R. Lapovok, D. Tomus, C. Bettles, Shear deformation with imposed hydrostatic pressure for enhanced compaction of powder, Scripta Materialia 58(10) (2008) 898-901.
[182] R. Lapovok, D. Tomus, B.C. Muddle, Low-temperature compaction of Ti–6Al–4V powder using equal channel angular extrusion with back pressure, Materials Science and Engineering: A 490(1–2) (2008) 171-180.
[183] W. Xu, X. Wu, X. Wei, E.W. Lui, K. Xia, Nanostructured multi-phase titanium-based particulate composites consolidated by Severe plastic deformation, International Journal of Powder Metallurgy 50(1) (2014) 49-56.
[184] R.Y. Lapovok, The role of back-pressure in equal channel angular extrusion, Journal of Materials Science 40(2) (2005) 341-346.
[185] B. Mani, M. Jahedi, M.H. Paydar, Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature, Powder Technology 219 (2012) 1-8.
[186] B. Mani, M.H. Paydar, Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites, Journal of Alloys and Compounds 492(1-2) (2010) 116-121.
[187] B. Mani, M.H. Paydar, Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites, Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM 2010 2 (2010
[188] A.V. Nagasekhar, S.C. Yoon, J.H. Yoo, S.Y. Kang, S.C. Baik, M.I.A. El Aal, H.S. Kim, Plastic flow and strain homogeneity of an equal channel angular pressing process enhanced through forward extrusion, Materials Transactions 51(5) (2010) 977-981.
[189] V.M. Segal, Materials processing by simple shear, Materials Science and Engineering: A 197(2) (1995) 157-164.
[190] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia 35(2) (1996) 143-146.
[191] P.B. Prangnell, C. Harris, S.M. Roberts, Finite element modelling of equal channel angular extrusion, Scripta Materialia 37(7) (1997) 983-989.
[192] D.P. DeLo, S.L. Semiatin, Finite-element modeling of nonisothermal equal-channel angular extrusion, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 30(5) (1999) 1391-1402.
[193] S.L. Semiatin, D.P. Delo, E.B. Shell, Effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion, Acta Materialia 48(8) (2000) 1841-1851.
[194] H.S. Kim, Finite element analysis of equal channel angular pressing using a round corner die, Materials Science and Engineering A 315(1-2) (2001) 122-128.
[195] H.S. Kim, M.H. Seo, S.I. Hong, Plastic deformation analysis of metals during equal channel angular pressing, Journal of Materials Processing Technology 113(1-3) (2001) 622-626.
[196] R. Srinivasan, Computer simulation of the equichannel angular extrusion (ECAE) process, Scripta Materialia 44(1) (2001) 91-96.
[197] J.Y. Suh, H.S. Kim, J.W. Park, J.Y. Chang, Finite element analysis of material flow in equal channel angular pressing, Scripta Materialia 44(4) (2001) 677-681.
[198] S.C. Balk, Y. Estrin, H.S. Kim, H.T. Jeong, R.J. Hellmig, Calculation of deformation behavior and texture evolution during equal channel angular pressing of IF steel using dislocation based modeling of strain hardening, Materials Science Forum, 2002, p 697-702.
[199] H.S. Kim, Evaluation of strain rate during equal-channel angular pressing, Journal of Materials Research 17(1) (2002) 172-179.
[200] H.S. Kim, Finite element analysis of deformation behaviour of metals during equal channel multi-angular pressing, Materials Science and Engineering A 328(1) (2002) 317-323.
[201] H.S. Kim, M.H. Seo, S.I. Hong, Finite element analysis of equal channel angular pressing of strain rate sensitive metals, Journal of Materials Processing Technology 130-131 (2002) 497-503.
[202] H.S. Kim, M.H. Seo, C.S. Oh, S.J. Kim, Equal Channel Angular Pressing of Metallic Powders, Materials Science Forum, 2003, p 89-92.
[203] Q.X. Pei, B.H. Hu, C. Lu, Y.Y. Wang, A finite element study of the temperature rise during equal channel angular pressing, Scripta Materialia 49(4) (2003) 303-308.
[204] J.H. Lee, I.H. Son, Y.T. Im, Finite element investigation of equal channel angular extrusion process, Materials Transactions 45(7) (2004) 2165-2171.
[205] S.C. Lee, S.Y. Ha, K.T. Kim, S.M. Hwang, L.M. Huh, H.S. Chung, Finite element analysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP, Materials Science and Engineering A 371(1-2) (2004) 306-312.
[206] S. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, M. Bourke, Heterogeneity of deformation texture in equal channel angular extrusion of copper, Acta Materialia 52(16) (2004) 4859-4875.
[207] H.S. Kim, Y. Estrin, Microstructural modelling of equal channel angular pressing for producing ultrafine grained materials, Materials Science and Engineering A 410-411 (2005) 285-289.
[208] W.J. Zhao, H. Ding, Y.P. Ren, S.M. Hao, J. Wang, J.T. Wang, Finite element simulation of deformation behavior of pure aluminum during equal channel angular pressing, Materials Science and Engineering A 410-411 (2005) 348-352.
[209] A.A. Gazder, S. Li, F.H. Dalla Torre, I.J. Beyerlein, C.F. Gu, C.H.J. Davies, E.V. Pereloma, Progressive texture evolution during equal channel angular extrusion, Materials Science and Engineering A 437(2) (2006) 259-267.
[210] I.V. Alexandrov, I.N. Budilov, G. Krallics, H.S. Kim, S.C. Yoon, A.A. Smolyakov, A.I. Korshunov, V.P. Solovyev, Simulation of equal-channel angular extrusion pressing, Materials Science Forum, 2006, p 201-208.
[211] P.D. Wu, Y. Huang, D.J. Lloyd, Studying grain fragmentation in ECAE by simulating simple shear, Scripta Materialia 54(12) (2006) 2107-2112.
[212] S.C. Yoon, M.H. Seo, H.S. Kim, Preform effect on the plastic deformation behavior of workpieces in equal channel angular pressing, Scripta Materialia 55(2) (2006) 159-162.
[213] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Materialia 55(14) (2007) 4769-4779.
[214] C. Xu, K. Xia, T.G. Langdon, The role of back pressure in the processing of pure aluminum by equal-channel angular pressing, Acta Materialia 55(7) (2007) 2351-2360.
[215] T. Inoue, Z. Horita, H. Somekawa, K. Ogawa, Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests, Acta Materialia 56(20) (2008) 6291-6303.
[216] A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, High-strain-rate response of ultra-fine-grained copper, Acta Materialia 56(12) (2008) 2770-2783.
[217] A.V. Nagasekhar, H.S. Kim, Plastic deformation characteristics of cross-equal channel angular pressing, Computational Materials Science 43(4) (2008) 1069-1073.
[218] S.C. Yoon, M.H. Seo, A. Krishnaiah, H.S. Kim, Finite element analysis of rotary-die equal channel angular pressing, Materials Science and Engineering A 490(1-2) (2008) 289-292.
[219] H.S. Kim, Multi-scale finite element simulation of severe plastic deformation, International Journal of Modern Physics B 23(6-7) (2009) 1621-1626.
[220] I. Balasundar, T. Raghu, Effect of friction model in numerical analysis of equal channel angular pressing process, Materials and Design 31(1) (2010) 449-457.
[221] C. Lu, G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, X.H. Liu, Crystal plasticity modeling of texture evolution and heterogeneity in equal channel angular pressing of aluminum single crystal, Acta Materialia 59(9) (2011) 3581-3592.
[222] S. Xu, C. Jing, G. Ren, P. Liu, Finite element simulation of die design for warm equal channel angular extrusion process of AZ31 alloy and its experimental investigation, Materials Science Forum, 2011, p 75-79.
[223] S.H. Joo, S.C. Yoon, H.G. Jeong, S. Lee, H.S. Kim, Deformation behavior of consecutive workpieces in equal channel angular pressing of solid dies, Journal of Materials Science 47(22) (2012) 7877-7882.
[224] M.S. Ghazani, B. Eghbali, Finite element simulation of cross equal channel angular pressing, Computational Materials Science 74 (2013) 124-128.
[225] A. Sahai, R.S. Sharma, K. Hansraj, Evolution of strain in multipass hybrid equal channel angular pressing using 3D finite element analysis, Materials Science Forum, 2013, p 283-288.
[226] M. Sedighi, M. Mahmoodi, Residual stresses evaluation in equal channel angular rolled al 5083 by IHD technique: Investigation of two calculation methods, Materials and Manufacturing Processes 28(1) (2013) 85-90.
[227] V. Bratov, E.N. Borodin, Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAP, Materials Science and Engineering A 631 (2015) 10-17.
[228] S. Bagherzadeh, K. Abrinia, Q. Han, Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultra-fine grained metals, Materials Letters 169 (2016) 90-94.
[229] F. Liu, Y. Liu, J. Wang, Estimation of average strain rate during equal-channel angular pressing, Materials Science Forum, 2016, p 419-425.
[230] I. Watanabe, D. Setoyama, Multiscale characterization of a polycrystalline aggregate subjected to severe plastic deformation with the finite element method, Materials Transactions 57(9) (2016) 1404-1410.
[231] D.N. Lee, An upper-bound solution of channel angular deformation, Scripta materialia 43(2) (2000) 115-118.
[232] D.N. Lee, Upper-bound solution of channel angular deformation, Scripta Materialia 43(2) (2000) 115-118.
[233] T. Aida, K. Matsuki, Z. Horita, T.G. Langdon, Estimating the equivalent strain in equal-channel angular pressing, Scripta Materialia 44(4) (2001) 575-579.
[234] J. Alkorta, J. Gil Sevillano, A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP), Journal of Materials Processing Technology 141(3) (2003) 313-318.
[235] Y.H. Kim, X. Ma, P.D. Hodgson, M.R. Barnett, Multi equal channel angular pressing with rotational dies, Materials Science Forum, 2003, p 2777-2782.
[236] C.J. Luis Pérez, Upper bound analysis and FEM simulation of equal fillet radii angular pressing, Modelling and Simulation in Materials Science and Engineering 12(2) (2004) 205-214.
[237] B.S. Altan, G. Purcek, I. Miskioglu, An upper-bound analysis for equal-channel angular extrusion, Journal of Materials Processing Technology 168(1) (2005) 137-146.
[238] W. Wei, G. Chen, An upper bound solution analysis of equal channel angular pressing, Journal of Metastable and Nanocrystalline Materials 23 (2005) 109-112.
[239] A.R. Eivani, A. Karimi Taheri, An upper bound solution of ECAE process with outer curved corner, Journal of Materials Processing Technology 182(1) (2007) 555-563.
[240] A.R. Eivani, A. Karimi Taheri, The effect of dead metal zone formation on strain and extrusion force during equal channel angular extrusion, Computational Materials Science 42(1) (2008) 14-20.
[241] C.J. Luis Pérez, R. Luri, Study of the ECAE process by the upper bound method considering the correct die design, Mechanics of Materials 40(8) (2008) 617-628.
[242] R. Luri, C.J.L. Pérez, Upper bound analysis of the ECAE process by considering strain hardening materials and three-dimensional rectangular dies, Journal of Manufacturing Science and Engineering, Transactions of the ASME 130(5) (2008) 0510061-05100612.
[243] A.R. Eivani, S. Ahmadi, E. Emadoddin, S. Valipour, A. Karimi Taheri, The effect of deformations passes on the extrusion pressure in axi-symmetric equal channel angular extrusion, Computational Materials Science 44(4) (2009) 1116-1125.
[244] A.V. Perig, A.M. Laptev, P.A. Kakavas, Upper bound analysis of equal channel angular extrusion: Two-parameter rigid blocks approach and numerical verification, Computational Plasticity X - Fundamentals and Applications (2009
[245] M. Reihanian, R. Ebrahimi, M.M. Moshksar, Upper-bound analysis of equal channel angular extrusion using linear and rotational velocity fields, Materials and Design 30(1) (2009) 28-34.
[246] K. Abrinia, M.J. Mirnia, A new generalized upper-bound solution for the ECAE process, International Journal of Advanced Manufacturing Technology 46(1-4) (2010) 411-421.
[247] N. Medeiros, L.P. Moreira, J.D. Bressan, J.F.C. Lins, J.P. Gouvêa, Upper-bound sensitivity analysis of the ECAE process, Materials Science and Engineering A 527(12) (2010) 2831-2844.
[248] K. Narooei, A. Karimi Taheri, A new model for prediction the strain field and extrusion pressure in ECAE process of circular cross section, Applied Mathematical Modelling 34(7) (2010) 1901-1917.
[249] C.J.L. Pérez, R. Luri, Upper bound analysis of the ECAE process by considering circular cross-section and strain hardening materials, Journal of Manufacturing Science and Engineering, Transactions of the ASME 132(4) (2010) 0410031-04100314.
[250] C. Şimşir, P. Karpuz, C.H. Gür, Quantitative analysis of the influence of strain hardening on equal channel angular pressing process, Computational Materials Science 48(3) (2010) 633-639.
[251] M. Vaseghi, A.K. Taheri, H.S. Kim, Upper bound analysis of deformation and dynamic ageing behavior in elevated temperature equal channel angular pressing of Al-Mg-Si alloys, Metals and Materials International 16(3) (2010) 363-369.
[252] Y.Z. Li, K.M. Xue, P. Li, An upper-bound solution to extrusion force of equal channel angular pressing with back pressure, Suxing Gongcheng Xuebao/Journal of Plasticity Engineering 18(2) (2011) 28-32.
[253] R. Luri, C.J. Luis Pérez, Modeling of the processing force for performing ECAP of circular cross-section materials by the UBM, International Journal of Advanced Manufacturing Technology 58(9-12) (2012) 969-983.
[254] F.R.F. Silva, N. Medeiros, L.P. Moreira, J.F.C. Lins, J.P. Gouvêa, Upper-bound and finite-element analyses of non-isothermal ECAP, Materials Science and Engineering A 546 (2012) 180-188.
[255] A.M. Laptev, A.V. Perig, O.Y. Vyal, Analysis of equal channel angular extrusion by upper bound method and rigid block model, Materials Research 17(2) (2014) 359-366.
[256] N. Medeiros, L.P. Moreira, Upper-bound analysis of die corner gap formation for strain-hardening materials in ECAP process, Computational Materials Science 91 (2014) 350-358.
[257] A.V. Perig, 2D upper bound analysis of ecae through 2θ-Dies for a range of channel angles, Materials Research 17(5) (2014) 1226-1237.
[258] K. Wei, P. Liu, Z. Ma, W. Wei, I.V. Alexandrov, J. Hu, An upper bound analysis of t-shaped equal channel angular pressing, Acta Metallurgica Slovaca 21(1) (2015) 4-12.
[259] I. Beyerlein, R. Lebensohn, C. Tomé, Polycrystal constitutive modeling of ECAP: Texture and microstructural evolution, Ultrafine Grained Materials 3 (2002) 585-594.
[260] I.J. Beyerlein, R.A. Lebensohn, C.N. Tomé, Polycrystal constitutive modeling of ECAP: Texture and microstructural evolution, TMS Annual Meeting (2002), pp 585-594.
[261] S.C. Vogel, I.J. Beyerlein, M.A.M. Bourke, C.N. Tomé, P. Rangaswamy, C. Xu, T.G. Langdon, Texture in equal-channel angular pressed aluminum and nickel, Materials Science Forum, 2002, p 673-678.
[262] S. Li, I.J. Beyerlein, Modelling texture evolution in equal channel angular extrusion of bcc materials: Effects of processing route and initial texture, Modelling and Simulation in Materials Science and Engineering 13(4) (2005) 509-530.
[263] S. Li, S.R. Kalidindi, I.J. Beyerlein, A crystal plasticity finite element analysis of texture evolution in equal channel angular extrusion, Materials Science and Engineering A 410-411 (2005) 207-212.
[264] A.A. Nazarov, I.V. Alexandrov, I.J. Beyerlein, N.A. Enikeev, T.S. Orlova, A.E. Romanov, R.Z. Valiev, Modeling of grain refinement and texture evolution during equal-channel angular pressing by means of a combined visco-plastic self consistent/ disclination model, TMS Annual Meeting 2006 (2006), pp 215-220.
[265] I.J. Beyerlein, D.J. Alexander, C.N. Tomé, Plastic anisotropy in aluminum and copper pre-strained by equal channel angular extrusion, Journal of Materials Science 42(5) (2007) 1733-1750.
[266] N.A. Enikeev, M.F. Abdullin, A.A. Nazarov, I.J. Beyerlein, Modelling grain refinement in fcc metals during equal-channel angular pressing by route "C", International Journal of Materials Research 98(3) (2007) 167-171
[267] I.V. Alexandrov, V.D. Sitdikov, Crystallographic texture development in CP Ti subjected to ECAP, Materials Science Forum, 2008, p 765-770.
[268] M. Hoseini, M. Meratian, H. Li, J. Szpunar, Simulation of texture development in pure aluminum deformed by equal channel angular pressing, Ceramic Transactionsed., 2008, p 713-720.
[269] M. Hoseini, M. Meratian, H. Li, J.A. Szpunar, Texture simulation of aluminum rod during equal channel angular pressing, Journal of Materials Science 43(13) (2008) 4561-4566.
[270] M. Kawasaki, I.J. Beyerlein, S.C. Vogel, T.G. Langdon, Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing, Acta Materialia 56(10) (2008) 2307-2317.
[271] S. Li, B.R. Donohue, S.R. Kalidindi, A crystal plasticity finite element analysis of cross-grain deformation heterogeneity in equal channel angular extrusion and its implications for texture evolution, Materials Science and Engineering A 480(1-2) (2008) 17-23.
[272] G.G. Yapici, C.N. Tomé, I.J. Beyerlein, I. Karaman, S.C. Vogel, C. Liu, Plastic flow anisotropy of pure zirconium after severe plastic deformation at room temperature, Acta Materialia 57(16) (2009) 4855-4865.
[273] M. Al-Maharbi, D. Foley, I. Karaman, I. Beyerlein, K.T. Hartwig, L.J. Kecskes, S. Mathaudhu, Importance of crystallographic texture of AZ31B on flow stress anisotropy and tension-compression asymmetry, Magnesium Technology (2010), pp 445-450.
[274] R.B. Figueiredo, I.J. Beyerlein, A.P. Zhilyaev, T.G. Langdon, Evolution of texture in a magnesium alloy processed by ECAP through dies with different angles, Materials Science and Engineering A 527(7-8) (2010) 1709-1718.
[275] S. Li, Grain refinement efficiency in equal channel angular extrusion of FCC metals inferred from crystal plasticity simulations of slip activities, Materials Science Forum, 2010, p 1971-1976.
[276] C.F. Gu, L.S. Tóth, The origin of strain reversal texture in equal channel angular pressing, Acta Materialia 59(14) (2011) 5749-5757.
[277] A. Ostapovets, P. Šedá, A. Jäger, P. Lejček, New misorientation scheme for a visco-plastic self-consistent model: Equal channel angular pressing of magnesium single crystals, International Journal of Plasticity 29(1) (2012) 1-12.
[278] P. Šedá, A. Ostapovets, A. Jäger, P. Lejček, Texture evolution in oriented magnesium single crystals processed by equal channel angular pressing, Philosophical Magazine 92(10) (2012) 1223-1237.
[279] A. Ostapovets, P. Molnár, A. Jäger, Visco-plastic self-consistent modelling of a grain boundary misorientation distribution after equal-channel angular pressing in an AZ31 magnesium alloy, Journal of Materials Science 48(5) (2013) 2123-2134.
[280] C.F. Gu, M. Hoffman, L.S. Toth, Y.D. Zhang, Grain size dependent texture evolution in severely rolled pure copper, Materials Characterization 101 (2015) 180-188.
[281] H.S. Ryoo, S.H. Yu, K.H. Oh, S.K. Hwang, Monte Carlo simulation of grain growth in ZR processed by ECAP, Materials Science Forum, 2002, p 655-660.
[282] S.H. Yu, H.S. Ryoo, S.K. Hwang, D.H. Shin, Monte-Carlo Modeling of Grain Growth in Zr Equal Channel Angular Pressed and Recrystallized, Metals and Materials International 9(2) (2003) 107-114.
[283] S.H. Yu, D.H. Shin, S.K. Hwang, Evolution of grain boundary character distribution in eca-pressed pure titanium, Ultrafine Grained Materials III (2004), pp 227-234.
[284] S.H. Yu, Y.B. Chun, S.K. Hwang, D.H. Shin, Texture development and Monte-Carlo simulation of microstructure evolution in pure Zr grain-refined by equal channel angular pressing, Philosophical Magazine 85(2-3 SPEC. ISS.) (2005) 345-371.
[285] X.w. Nie, S. Xie, H. Xu, Y. Du, Simulation of the ultra-fine microstructure evolution during annealing of AZ31 processed by ECAP, Physica B: Condensed Matter 405(8) (2010) 1969-1972.
[286] M. Esmailzadeh, M. Aghaie-Khafri, Finite element and artificial neural network analysis of ECAP, Computational Materials Science 63 (2012) 127-133.
[287] F. Djavanroodi, B. Omranpour, M. Sedighi, Artificial neural network modeling of ECAP process, Materials and Manufacturing Processes 28(3) (2013) 276-281.
[288] D. Salcedo, C.J. Luis, I. Puertas, J. León, R. Luri, J.P. Fuertes, FEM modelling and experimental analysis of an AA5083 turbine blade from ECAP processed material, Materials and Manufacturing Processes 29(4) (2014) 434-441.
[289] D. Salcedo, C.J. Luis, J. León, I. Puertas, J.P. Fuertes, R. Luri, Simulation and analysis of isothermal forging of AA6063 obtained from material processed by equal channel angular pressing severe plastic deformation, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229(5) (2015) 727-743.
[290] F. Fereshteh-Saniee, A. Sepahi-Boroujeni, S. Sepahi-Boroujeni, Optimized tool design for expansion equal channel angular extrusion (Exp-ECAE) process using FE-based neural network and genetic algorithm, International Journal of Advanced Manufacturing Technology 86(9-12) (2016) 3471-3482.
[291] M. Mahmoodi, A. Naderi, Applicability of artificial neural network and nonlinear regression to predict mechanical properties of equal channel angular rolled Al5083 sheets, Latin American Journal of Solids and Structures 13(8) (2016) 1515-1525.
[292] V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Materials Science and Engineering: A 271(1–2) (1999) 322-333.
[293] A.V. Nagasekhar, Y. Tick-Hon, H.P. Seow, Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing, Journal of Materials Processing Technology 192–193 (2007) 449-452.
[294] P. Leo, E. Cerri, P.P. De Marco, H.J. Roven, Properties and deformation behaviour of severe plastic deformed aluminium alloys, Journal of Materials Processing Technology 182(1–3) (2007) 207-214.
[295] K. Narooei, A.K. Taheri, USING OF BEZIER FORMULATION FOR CALCULATION OF STREAMLINE, STRAIN DISTRIBUTION AND EXTRUSION LOAD IN RECTANGULAR CROSS SECTION OF ECAE PROCESS, International Journal of Computational Methods 10(3) (2013), 1350005,
[296] B. Aour, F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, O. Rahmani, J.M. Lefebvre, A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer, International Journal of Mechanical Sciences 50(3) (2008) 589-602.
[297] J.H. Lee, I.H. Son, Y.T. Im, S.H. Chon, J.K. Park, Design guideline of multi-pass equal channel angular extrusion for uniform strain distribution, Journal of Materials Processing Technology 191(1–3) (2007) 39-43.
[298] F. Zaïri, B. Aour, J.M. Gloaguen, M. Naït-Abdelaziz, J.M. Lefebvre, Numerical modelling of elastic–viscoplastic equal channel angular extrusion process of a polymer, Computational Materials Science 38(1) (2006) 202-216.
[299] Y.X. Li, T.T. Zhou, Y.G. Zhang, C.Q. Chen, The shear strain measurement and finite element modeling during equal channel angular pressing of aluminum, Materials Science Forum, 2002, p 441-446.
[300] M.A. Agwa, M.N. Ali, A.E. Al-Shorbagy, Optimum processing parameters for equal channel angular pressing, Mechanics of Materials 100 (2016) 1-11.
[301] R. Nemati-Chari, K. Dehghani, A. Kami, D. Banabic, Application of response surface methodology for study of effective strain in equal channel angular pressing of AA6061 alloy, Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science 16(2) (2015) 184-192.
[302] S.C. Baik, R.J. Hellmig, Y. Estrin, H.S. Kim, Modeling of deformation behavior of copper under equal channel angular pressing, Zeitschriftfuer Metallkunde/Materials Research and Advanced Techniques 94(6) (2003) 754-760.
[303] I.J. Beyerlein, R.A. Lebensohn, C.N. Tomé, Modeling texture and microstructural evolution in the equal channel angular extrusion process, Materials Science and Engineering A 345(1-2) (2003) 122-138.
[304] N.A. Enikeev, H.S. Kim, I.V. Alexandrov, Kinetic dislocation model of microstructure evolution during severe plastic deformation, Materials Science and Engineering A 460-461 (2007) 619-623.
[305] Y. Estrin, Modeling of Severe Plastic Deformation: Evolution of Microstructure, Texture, and Strength, Integral Materials Modeling: Towards Physics-Based Through-Process Modelsed., 2007, pp 275-284.
[306] Y. Estrin, H.S. Kim, Modelling microstructure evolution toward ultrafine crystallinity produced by severe plastic deformation, Journal of Materials Science 42(5) (2007) 1512-1516.
[307] Y. Estrin, H.S. Kim, Modelling microstructure evolution towards ultrafine crystallinity produced by severe plastic deformation, Journal of Materials Science 42(21) (2007) 9092-9096.
[308] J.M. García-Infanta, S. Swaminathan, F. Carreño, O.A. Ruano, T.R. McNelley, Grain shape and microstructural evolution during equal channel angular pressing, Scripta Materialia 58(1) (2008) 17-20.
[309] D. Goran, J.J. Fundenberger, E. Bouzy, W. Skrotzki, S. Suwas, T. Grosdidier, L.S. Toth, Local texture and microstructure in cube-oriented nickel single crystal deformed by equal channel angular extrusion, Philosophical Magazine 91(2) (2011) 291-309.
[310] H. Hallberg, M. Wallin, M. Ristinmaa, Modeling of continuous dynamic recrystallization in commercial-purity aluminum, Materials Science and Engineering A 527(4-5) (2010) 1126-1134.
[311] S. Li, A.A. Gazder, I.J. Beyerlein, C.H.J. Davies, E.V. Pereloma, Microstructure and texture evolution during equal channel angular extrusion of interstitial-free steel: Effects of die angle and processing route, Acta Materialia 55(3) (2007) 1017-1032.
[312] F. Liu, H. Yuan, J. Yin, J.T. Wang, Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing, Materials Science and Engineering A (2015)
[313] H. Petryk, S. Stupkiewicz, A quantitative model of grain refinement and strain hardening during severe plastic deformation, Materials Science and Engineering A 444(1-2) (2007) 214-219.
[314] J.W. Signorelli, P.A. Turner, V. Sordi, M. Ferrante, E.A. Vieira, R.E. Bolmaro, Computational modeling of texture and microstructure evolution in Al alloys deformed by ECAE, Scripta Materialia 55(12) (2006) 1099-1102.
[315] L.S. Tóth, Modelling of strain hardening and microstructural evolution in equal channel angular extrusion, Computational Materials Science 32(3-4) (2005) 568-576.
[316] L.S. Toth, C.F. Gu, Modeling of disorientation axis distribution in severely deformed copper, Scripta Materialia 69(2) (2013) 183-186.
[317] J.C. Werenskiold, H.J. Roven, Microstructure and texture evolution during ECAP of an AlMgSi alloy: Observations, mechanisms and modeling, Materials Science and Engineering A 410-411 (2005) 174-177.
[318] V.S. Zhernakov, I.N. Budilov, G.I. Raab, I.V. Alexandrov, R.Z. Valiev, A numerical modelling and investigations of flow stress and grain refinement during equal-channel angular pressing, Scripta Materialia 44(8-9) (2001) 1765-1769.
[319] S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, P.K. Liaw, Texture evolution of five wrought magnesium alloys during route a equal channel angular extrusion: Experiments and simulations, Acta Materialia 53(11) (2005) 3135-3146.
[320] I.V. Alexandros, M.V. Zhilina, A.V. Scherbakov, A.I. Korshunov, P.N. Nizovtsev, A.A. Smolyakov, V.P. Solovyev, I.J. Beyerlein, Texture formation during severe plastic deformation, Materials Science Forum, 2005, p 785-790.
[321] R. Arruffat-Massion, L.S. Tóth, J.P. Mathieu, Modeling of deformation and texture development of copper in a 120° ECAE die, Scripta Materialia 54(9) (2006) 1667-1672.
[322] S.J. Kim, M.H. Seo, S.C. Baik, Y. Estrin, H.S. Kim, Finite element analysis of equal channel angular pressing based on a dislocation density and cell size evolution model, Journal of Metastable and Nanocrystalline Materials 15-16 (2003) 231-234.
[323] B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, J.J. Fundenberger, Analysis of texture evolution in magnesium during equal channel angular extrusion, Acta Materialia 56(2) (2008) 200-214.
[324] I.J. Beyerlein, C.N. Tomé, Modeling transients in the mechanical response of copper due to strain path changes, International Journal of Plasticity 23(4) (2007) 640-664.
[325] I.J. Beyerlein, L.S. Tóth, C.N. Tomé, S. Suwas, Role of twinning on texture evolution of silver during equal channel angular extrusion, Philosophical Magazine 87(6) (2007) 885-906.
[326] J.A. del Valle, O.A. Ruano, Separate contributions of texture and grain size on the creep mechanisms in a fine-grained magnesium alloy, Acta Materialia 55(2) (2007) 455-466.
[327] G.Y. Deng, C. Lu, L.H. Su, X.H. Liu, A.K. Tieu, Modeling texture evolution during ECAP of copper single crystal by crystal plasticity FEM, Materials Science and Engineering A 534 (2012) 68-74.
[328] Y. Estrin, R.J. Hellmig, S.C. Baik, H.S. Kim, H.G. Brokmeier, A. Zi, Microstructure and texture development in copper and aluminum under ecap: New experimental results and modeling, Ultrafine Grained Materials III (2004), pp 247-253.
[329] A. Gholinia, P. Bate, P.B. Prangnell, Modelling texture development during equal channel angular extrusion of aluminium, Acta Materialia 50(8) (2002) 2121-2136.
[330] S. Li, I.J. Beyerlein, D.J. Alexander, S.C. Vogel, Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling, Acta Materialia 53(7) (2005) 2111-2125.
[331] S. Li, I.J. Beyerlein, C.T. Necker, On the development of microstructure and texture heterogeneity in ECAE via route C, Acta Materialia 54(5) (2006) 1397-1408.
[332] L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, S. Suwas, Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field, Acta Materialia 52(7) (2004) 1885-1898.
[333] G.G. Yapici, I. Karaman, Z.P. Luo, Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures, Acta Materialia 54(14) (2006) 3755-3771.
[334] D.J. Alexander, I.J. Beyerlein, Mechanical properties of high-purity copper processed by equal channel angular extrusion, Ultrafine Grained Materials III (2004), pp 517-522.
[335] B. Aour, F. Zaïri, R. Boulahia, M. Naït-Abdelaziz, J.M. Gloaguen, J.M. Lefebvre, Experimental and numerical study of ECAE deformation of polyolefins, Computational Materials Science 45(3) (2009) 646-652.
[336] R.N. Chari, A. Kami, B.M. Dariani, Modeling and optimization of equivalent plastic strain in equal-channel angular rolling using response surface methodology, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229(11) (2015) 1963-1975.
[337] H.S. Kim, M.H. Seo, S.I. Hong, H.R. Lee, B.S. Chun, K.H. Lee, Modelling of equal channel angular pressing for ultrafine-grained metals, Materials Science Forum, 2002, p 421-426.
[338] S. Poortmans, L. Duchêne, A.M. Habraken, B. Verlinden, Modelling compression tests on aluminium produced by equal channel angular extrusion, Acta Materialia 57(6) (2009) 1821-1830.
[339] H.J. Sue, H. Dilan, C.K.Y. Li, Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: Finite element methods modeling, Polymer Engineering and Science 39(12) (1999) 2505-2515.
[340] L. Trebacz, H. Paul, L. Madej, M. Pietrzyk, Numerical analysis of the microstructure and mechanical properties evolution during equal channel angular pressing, Materials ScienceForum, 2010, p 1940-1945.
[341] H. Mughrabi, H.W. Höppel, Cyclic deformation and fatigue properties of very fine-grained metals and alloys, International Journal of Fatigue 32(9) (2010) 1413-1427.
[342] A.P. Zhilyaev, A.A. Gimazov, T.G. Langdon, Recent developments in modelling of microhardness saturation during SPD processing of metals and alloys, Journal of Materials Science 48(13) (2013) 4461-4466.
[343] Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview, International Journal of Fatigue 32(6) (2010) 898-907.
[344] A.R. Eivani, A.K. Taheri, Effective strain based on shear and principal strains in equal channel angular extrusion with outer curved corner, Computational Materials Science 41(3) (2008) 409-419.
[345] R.E. Goforth, K.T. Hartwig, L.R. Cornwell, Severe plastic deformation of materials by equal-channel angular extrusion (ECAE), Investigations and Applications of Severe Plastic Deformation (2000) 3-12.
[346] B. Avitzur, W. Pachla, UPPER BOUND APPROACH TO PLANE STRAIN PROBLEMS USING LINEAR AND ROTATIONAL VELOCITY FIELDS - PART I AND 2: BASIC CONCEPTS AND APPLICATIONS, Journal of engineering for industry 108(4) (1986) 295-316.
[347] B. Avitzur, W. Pachla, The Upper Bound Approach to Plane Strain Problems Using Linear and Rotational Velocity Fields - Part II: Application, J. Eng. Ind. 108 (1986) 307-316.
[348] A.R. Eivani, S. Ahmadi, E. Emadoddin, S. Valipour, A.K. Taheri, The effect of deformations passes on the extrusion pressure in axi-symmetric equal channel angular extrusion, Computational Materials Science 44(4) (2009) 1116-1125.
[349] A. Hasani, L.S. Toth, Deformation Field Analysis in Equal Channel Angular Extrusion of Metals Using Asymmetric Flow Function, Advanced Engineering Materials 17(12) (2015) 1760-1772.
[350] A. Vinogradov, Mechanical Properties of Ultrafine-Grained Metals: New Challenges and Perspectives, Advanced Engineering Materials 17(12) (2015) 1710-1722.
[351] R. Lapovok, The positive role of back-pressure in equal channel angular extrusion, Materials Science Forum 503 (2006), pp 37-44.
[352] M. Reihanian, R. Ebrahimi, M.M. Moshksar, Upper-bound analysis of equal channel angular extrusion using linear and rotational velocity fields, Materials & Design 30(1) (2009) 28-34.
[353] E. Hosseini, M. Kazeminezhad, The effect of ECAP die shape on nano-structure of materials, Computational Materials Science 44(3) (2009) 962-967.
[354] Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation, Acta Materialia 46(15) (1998) 5509-5522.
[355] E. Hosseini, M. Kazeminezhad, ETMB model investigation of flow softening during severe plastic deformation, Computational Materials Science 46(4) (2009) 902-905.
[356] F. Djavanroodi, M. Ebrahimi, Effect of die parameters and material properties in ECAP with parallel channels, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(29-30) (2010) 7593-7599.
[357] F. Djavanroodi, M. Ebrahimi, Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(4-5) (2010) 1230-1235.
[358] B. Talebanpour, N. Pardis, M. Hariri, M.M. Moshksar, Utilization of channel angular deformation as an alternative for direct extrusion, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(10-11) (2010) 2492-2497.
[359] A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology 99(1) (1977) 2-15.
[360] R.D. Haghighi, A.J. Jahromi, B.E. Jahromi, Simulation of Aluminum Powder in Tube Compaction Using Equal Channel Angular Extrusion, Journal of Materials Engineering and Performance 21(2) (2012) 143-152.
[361] M. Ebrahimi, B. Rajabifar, F. Djavanroodi, New approaches to optimize strain behavior of Al6082 during equal channel angular pressing, Journal of Strain Analysis for Engineering Design 48(6) (2013) 395-404.
[362] F. Ahmadi, M. Farzin, Finite element analysis of ultrasonic-assisted equal channel angular pressing, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 228(11) (2014) 1859-1868.
[363] F. Ahmadi, M. Farzin, Investigation of a new route for equal channel angular pressing process using three-dimensional finite element method, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture 228(7) (2014) 765-774.
[364] M. Ebrahimi, S. Attarilar, C. Gode, F. Djavanroodi, Damage prediction of 7025 aluminum alloy during equal-channel angular pressing, International Journal of Minerals Metallurgy and Materials 21(10) (2014) 990-998.
[365] M. Aghaie-khafri, M. Rejaeian, A comparison between numerical and analytical modeling of ECAP, Iranian Journal of Materials Forming 1(1) (2014) 56-63.
[366] R.N. Chari, A. Kami, B.M. Dariani, Modeling and optimization of equivalent plastic strain in equal-channel angular rolling using response surface methodology, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture 229(11) (2015) 1963-1975.
[367] C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 398(1-2) (2005) 66-76.
[368] C. Pearson, The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin, J. Inst. Metals 54(1) (1934) 111-124.
[369] T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, Journal of Materials Science 44(22) (2009) 5998-6010.
[370] T.G. Langdon, The mechanical properties of superplastic materials, Metallurgical Transactions A 13(5) (1982) 689-701.
[371] M. Kawasaki, T.G. Langdon, Review: achieving superplastic properties in ultrafine-grained materials at high temperatures, Journal of Materials Science 51(1) (2016) 19-32.
[372] M. Ashby, Indentation creep, Materials science and technology 8(7) (1992) 594-601.
[373] R. Mahmudi, R. Alizadeh, S. Azhari, Strain rate sensitivity of equal-channel angularly pressed Sn–5Sb alloy determined by shear punch test, Materials Letters 97 (2013) 44-46.
[374] R. Alizadeh, R. Mahmudi, A.H.W. Ngan, Y. Huang, T.G. Langdon, Superplasticity of a nano-grained Mg–Gd–Y–Zr alloy processed by high-pressure torsion, Materials Science and Engineering: A 651 (2016) 786-794.
[375] M. Karami, R. Mahmudi, Shear punch superplasticity in equal-channel angularly pressed Mg–12Li–1Zn alloy, Materials Science and Engineering: A 576 (2013) 156-159.
[376] H. Miyamoto, Corrosion of Ultrafine Grained Materials by Severe Plastic Deformation, an Overview, Materials Transactions 57(5) (2016) 559-572.
[377] K. Hajizadeh, H. Maleki‐Ghaleh, A. Arabi, Y. Behnamian, E. Aghaie, A. Farrokhi, M. Hosseini, M. Fathi, Corrosion and biological behavior of nanostructured 316L stainless steel processed by severe plastic deformation, Surface and Interface Analysis 47(10) (2015) 978-985.
[378] C. Pan, L. Liu, Y. Li, B. Zhang, F. Wang, The Electrochemical Corrosion Behavior of Nanocrystalline 304 Stainless Steel Prepared by Magnetron Sputtering, Journal of The Electrochemical Society 159(11) (2012) C453-C460.
[379] C. Blawert, D. Manova, M. Störmer, J.W. Gerlach, W. Dietzel, S. Mändl, Correlation between texture and corrosion properties of magnesium coatings produced by PVD, Surface and Coatings Technology 202(11) (2008) 2236-2240.
[380] E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications, Journal of the Mechanical Behavior of Biomedical Materials 37 (2014) 307-322.
[381] G.-L. Song, Z. Xu, Crystal orientation and electrochemical corrosion of polycrystalline Mg, Corrosion Science 63 (2012) 100-112.
[382] R. Xin, B. Li, L. Li, Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Materials & Design 32(8–9) (2011) 4548-4552.
[383] H. Garbacz, M. Pisarek, K.J. Kurzydłowski, Corrosion resistance of nanostructured titanium, Biomolecular Engineering 24(5) (2007) 559-563.