[1] W. Wang, Y. Shi, N. Yang, X. Yuan, Experimental analysis of drilling process in cortical bone, Medical engineering & physics 36(2) (2014) 261-266.
[2] R.K. Pandey, S. Panda, Drilling of bone: A comprehensive review, Journal of clinical Orthopaedics and Trauma 4(1) (2013) 15-30.
[3] M. Louredo, I. Díaz, J.J. Gil, DRIBON: A mechatronic bone drilling tool. Mechatronics 22(8) (2012) 1060-1066.
[4] M.H. Aziz, M.A. Ayub, R. Jaafar, Real-time algorithm for detection of breakthrough bone drilling, Procedia Engineering 41 (2012) 352-359.
[5] I. Díaz, J.J. Gil, M. Louredo, Bone drilling methodology and tool based on position measurements, Computer methods and programs in biomedicine 112(2) (2013) 284-292.
[6] J. Sui, N. Sugita, K. Ishii, K. Harada, Mechanistic modeling of bone-drilling process with experimental validation Journal of Materials Processing Technology 214(4) (2014) 1018-1026.
[7] G. Augustin, T. Zigman, S. Davila, T. Udilljak, Cortical bone drilling and thermal osteonecrosis, Clinical biomechanics 27(4) 2012 313-325.
[8] K.N. Bachus, M.T. Rondina, D.T. Hutchinson, The effects of drilling force on cortical temperatures and their duration: an in vitro study, Medical engineering & physics 22(10) (2000) 685-691.
[9] P. FG, Histological change in bone after insertion of skeletal fixation pins, J Oral Surg Anest Hosp Dent Serv 18 (1960) 9.
[10] F. Bronner, M.C. Farach-Carson, J. Rubin, S.D. Bain, Bone Resorption, (2005): Springer.
[11] A. Eriksson, T. Albrektsson, Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit, The Journal of prosthetic dentistry 50(1) (1983) 101-107.
[12] A.R. Moritz, F. Henriques Jr, Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns, The American journal of pathology 23(5) (1947) p. 695.
[13] R. Eriksson, T. Albrektsson, The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber, Journal of Oral and Maxillofacial surgery 42(11) (1984) 705-711.
[14] Y. Hou, C. Li, H. Ma, Y. Zhang, M. Yang, X. Zhang, A Theoretical Analysis on Bone Drilling Temperature Field of Superhard Drill, The Open Mechanical Engineering Journal 10(1) (2016).
[15] L. Lamazza, G. Garreffa, D. Laurito, M. Lollobrigida, L. Palmieri, et al., Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone, BioMed research international (2016) 2016.
[16] R.K. Pandey, S.S. Panda, Optimization of multiple quality characteristics in bone drilling using grey relational analysis, Journal of orthopaedics 12(1) (2015) 39-45.
[17] J. Lundskog, Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury, Scandinavian journal of plastic and reconstructive surgery 9 (1971) 1-80.
[18] K. Deb, S. Karthik. Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling, International conference on evolutionary multi-criterion optimization (2007). Springer.
[19] H. Safikhani, A. Hajiloo, M.J.C. Ranjbar, Modeling and multi-objective optimization of cyclone separators using CFD and genetic algorithms, Computers & Chemical Engineering 35(6) (2011) 1064-1071.
[20] S. Eiamsa-Ard, C. Nuntadusit, P.J.H.T.E. Promvonge, Effect of twin delta-winged twisted-tape on thermal performance of heat exchanger tube, 34(15) (2013) 1278-1288.
[21] H. Safikhani, A. Abbassi, A. Khalkhali, Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial Neural Networks and genetic algorithms 25(5) (2014) 1608-1617.
[22] R.K. Pandey, S.J.M. Panda, Optimization of bone drilling parameters using grey-based fuzzy algorithm, Heat Transfer Engineering. 47 (2014) 386-392.
[23] K. Alam, A. Mitrofanov, V.V.J.M.e. Silberschmidt, Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone, Medical engineering & physics 33(2) (2011) 234-239.
[24] M. Basiaga, Z. Paszenda, J. Szewczenko, Numerical and experimental analyses of drills used in osteosynthesis. Acta of Bioengineering and Biomechanics13(4) (2011) 29-36.
[25] C. Jacobs, M. Pope, J. Berry, F.J.J.o.B. Hoaglund, A study of the bone machining process—orthogonal cutting, Journal of Biomechanics 7(2) (1974) 131-136.
[26] J. Lee, B.A. Gozen, O.B.J.J.o.b. Ozdoganlar, Modeling and experimentation of bone drilling forces, Journal of Biomechanics 45(6) (2012) 1076-1083.
[27] T. Udiljak, D. Ciglar, S.J.A.i.P.E. Skoric, Investigation into bone drilling and thermal bone necrosis, Advances in Production Engineering & Management 2(3) (2007) 103-112.
[28] R. Eriksson, T.J.J.o.O. Albrektsson, M. Surgery, The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber, Journal of Prosthetic Dentistry 42(11) (1984) 705-711.
[29] R. Vaughn, F. Peyton, The influence of rotational speed on temperature rise during cavity preparation, Journal of dental research 30(5) (1951) 737-744.
[30] G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D.S. Vedrina, Thermal osteonecrosis and bone drilling parameters revisited, Archives of Orthopaedic and Trauma Surgery 128(1) (2008) 71-77.
[31] G. Augustin, S. Davila, T. Udilljak, T. Staroveski, D. Brezak Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill, International Orthopaedics 36(7) (2012) 1449-1456.
[32] F. Karaca, B. Aksakal, M.J.M.E. Kom, Physics, Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study, Medical Engineering & Physics 33(10) (2011) 1221-1227.
[33] J. Lee, O.B. Ozdoganlar, Y.J.M.e. Rabin, physics, An experimental investigation on thermal exposure during bone drilling, Medical Engineering & Physics 34(10) (2012) 1510-1520.
[34] R.K. Pandey, S.J.M. Panda, Multi-performance optimization of bone drilling using Taguchi method based on membership function, measurement 59 (2015) 9-13.
[35] L.S. Matthews, C.J.J. Hirsch, Temperatures measured in human cortical bone when drilling, Journal of bone and joint surgery 54(2) (1972) 297-308.
[36] M. Sharawy, C.E. Misch, N. Weller, S.J.J.o.O. Tehemar, Heat generation during implant drilling: the significance of motor speed, Part H: Journal of Engineering in Medicine 60(10) 2002 1160-1169.
[37] E. Shakouri, M.H. Sadeghi, M. Maerefat, Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone, Modares Mechanical Engineering 228(4) (2014) 330-341.
[38] G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D.S. Vedrina, A. Antabak, Thermal osteonecrosis and bone drilling parameters revisited, Archives of Orthopaedic and Trauma Surgery 128(1) (2008) 71-77.
[39] K. Alam, Experimental and numerical analysis of conventional and ultrasonically-assisted cutting of bone (2009), © Khurshid Alam.
[40] R.K. Pandey, S. Panda, Optimization of bone drilling parameters using grey-based fuzzy algorithm, Measurement 47 (2014) 386-392.
[41] R.K. Pandey, S. Panda, Multi-performance optimization of bone drilling using Taguchi method based on membership function, Measurement 59 (2015) 9-13.
[42] R.K. Pandey, S. Panda, Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach, Journal of Intelligent Manufacturing 26(6) (2015) 1121-1129.
[43] V. Tahmasbi, M. Ghoreishi, M.J.P.o.t.I.o.M.E. Zolfaghari, Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone, Part H: Journal of Engineering in Medicine 231(11) (2017) 1012-1024.
[44] V. Tahmasbi, M. Ghoreshi, M.J.I.J.o.E.-T.A.B. Zolfaghari, Temperature in bone drilling process: Mathematical modeling and Optimization of effective parameters, 29(7) (2016) 946-953.
[45] V. Tahmasbi, M. Ghoreishi, M.J.B. Zolfaghari, Sensitivity analysis of temperature and force in robotic bone drilling process using Sobol statistical method, Biotechnology & Biotechnological Equipment 32(1) (20181) 30-141.
[46] H. Heydari, M. Zolfaghari, M. Ghoreishi, V. Tahmasbi, Analytical and experimental study of effective parameters on process temperature during cortical bone drilling, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232(11) (2018) 230-245.
[47] T. Staroveski, D. Brezak, T. Udiljak, Drill wear monitoring in cortical bone drilling, Medical engineering & physics 37(6) (2015) 560-566.
[48] V. Tahmasbi, M. Ghoreshi, M. Zolfaghari, Temperature in bone drilling process: Mathematical modeling and optimization of effective parameters (Technical Note), International Journal of Engineering-Transactions A: Basics 29(7) (2016) 946.
[49] M. Ghoreishi, V. Tahmasbi, Optimization of material removal rate in dry electro-discharge machining process,Modares Mechanical Engineering 14(12) (2015) 9.
[50] D.C. Montgomery, Design and analysis of experiments. (2008) John Wiley & Sons.
[51] T.H. Hou, C. H. Su, W. L. Liu, Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technology 173(3) (2007) 153-62.
[52] R.H. Myers, D.C. Montgomery, C.M.J.A.P. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley Series in Probability and Statistics). (1995).
[53] S.M. Assarzadeh, Ghoreishi, A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters, The International Journal of Advanced Manufacturing Technology 64(9-12) (2013) 1459-1477.
[54] H. Safikhani, A. Hajiloo, M. Ranjbar, Modeling and multi-objective optimization of cyclone separators using CFD and genetic algorithms, Computers & Chemical Engineering 35(6) (2011) 1064-1071.
[55] H. Safikhani, A. Abbassi, A. Khalkhali, M. Kalteh, Multi-objective optimization of nanofluid flow in flat tubes using CFD, artificial neural networks and genetic algorithms, Adv. Powder Technol 25(5) (2014) 1608-1617.