[2] Moradi, M; Ghoreishi, M; Rahmani, A. Numerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418, Journal of Modern Processes in Manufacturing and Production, 5 (2016) 21–31.
[3] Seidel, T. U; Reynolds, A. P. Two-dimensional friction stir welding process model based on fluid mechanics. Sci. Technol. Weld. Join. 8 (2003) 175–183.
[4] Ulysse, P. Three-dimensional modeling of the friction stir-welding process. Int. J. Mach. Tools Manuf. 42 (2002) 1549–1557.
[5] Colegrove, P. A; Shercliff, H. R. Development of the Trivex friction stir welding tool: Part II-3-Dimensional flow modelling. Sci. Technol. Weld. Join, 9 (2004) 352–361.
[6] Colegrove, P. A; Shercliff, H. R. 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J. Mater. Process. Technol, 169 (2005) 320–327.
[7] Long, T; Reynolds, A. P. Parametric studies of friction stir welding by commercial fluid dynamics simulation. Sci. Technol. Weld. Join, 11 (2013) 200–208.
[8] Carlone, P; Palazzo, G. S. Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metall. Microstruct. Anal, 2 (2013) 213–222.
[9] Deng, X; Xu, S. Two-dimensional finite element simulation of material flow in the friction stir welding process. J. Manuf. Process, 6 (2004) 125–133.
[10] Schmidt, H; Hattel, J. A local model for the thermomechanical conditions in friction stir welding. Model. Simul. Mater. Sci. Eng, 13 (2005) 77–93.
[11] Guerdoux, S; Fourment, L. A 3D numerical simulation of different phases of friction stir welding. Model. Simul. Mater. Sci. Eng, 17 (2009) 075001.
[12] Buffa, G; Hua, J; Shivpuri, R; Fratini, L. Design of the friction stir welding tool using the continuum based FEM model. Mater. Sci. Eng. A, 419 (2006) 381–388.
[13] Assidi, M; Fourment, L. Accurate 3D friction stir welding simulation tool based on friction model calibration. Int. J. Mater. Form, 2 (2009) 327–330.
[14] Dialami, N; Chiumenti, M; Cervera, M; de Saracibar, C. A. An apropos kinematic framework for the numerical modelling of Friction Stir Welding. Comput. Struct, 117 (2013) 48–57.
[15] Al-Badour, F; Merah, N; Shuaib, A; Bazoune, A. Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J. Mater. Process. Technol. 213(8) (2013) 1433–1439.
[16] Brar, N.S; Joshi, V.S; Harris, B.W. Constitutive model constants for Al7075-T651 and Al7075-T6, AIP Conference Proceedings, Vol, 1195, (2009) 945-948.
[17] Akram, S; Jaffery, S. H. I; Khan, M; Fahad, M; Mubashar, A; Ali, L. Numerical and experimental investigation of Johnson–Cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approach. Adv. Mech. Eng, 10(9) (2018) 1-14.
[18] Thimmaraju, P. K; Arakanti, K; Mohan Reddy, G. Ch. Influence of Tool Geometry on Material Flow Pattern in Friction Stir Welding Process. Int. J. Theor. App. Mech. 12 (2017) 445–458.
[19] Jamshidi Aval, H; Serajzadeh, S; Kokabi, A. H. Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061. Mat. Sci. Eng. A, 528 (2011) 8071– 8083.
[20] Shivkumar, S; Ricci, S; Apelian, D. Production and Electrolysis of Light Metals, Pergamon, Halifax, (1989) 173–182.
[21] Shivkumar, S; Ricci, S; Apelian, D. Effect of solution treatment parameters on tensile properties of cast aluminum alloys,
J. Heat Treating, 8 (1990) 63–70.
[22] Brett, S; Doherty, R. D. Loss of solute at the fracture surface in fatigued aluminium precipitation-hardened alloys, Mater. Sci. Eng, 32 (1978) 255–265.
[23] Lee W. B; Yeon Y. M; Jung S. B. The mechanical properties related to the dominant microstructure in the weld zone of dissimilar formed Al alloy joints by friction stir welding. J Mater Sci, 38 (2003) 4183– 4191.