[1] G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, (1983) 541-543.
[2] Y. C. Lin, X. M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials & Design, 32 (4) (2011) 1733-1759.
[3] W. Song, J. Ning, X. Mao, H. Tang, A modified Johnson-Cook model for titanium matrix composites reinforced with titanium carbide particles at elevated temperatures, Materials Science and Engineering: A, 576 (2013) 280-289.
[4] H. Y. Li, X. F. Wang, J. Y. Duan, J. J. Liu, A modified Johnson-Cook model for elevated temperature flow behavior of T24 steel, Materials Science and Engineering: A, 577 (2013) 138-146.
[5] J. Q. Tan, M. Zhan, S. Liu, T. Huang, J. Guo, H. Yang, A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates, Materials Science and Engineering: A, 631 (2015) 214-219.
[6] Y. C. Lin, X. M. Chen, G. Liu, A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel, Materials Science and Engineering: A, 527 (26) (2010) 6980-6986.
[7] Z. Akbari, H. Mirzadeh, J. M. Cabrera, A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation, Materials & Design, 77 (2015) 126-131.
[8] E. Shafiei, K. Dehghani, Prediction of single-peak flow stress curves at high temperatures using a new logarithmic-power function, Journal of Materials Engineering and Performance, 25 (9) (2016) 4024-4035.
[9] Abaqus 6.10 Documentation, Dassault Systemes, (2010).
[10] LS-DYNA User’s manual, Livermore Software Technology Corporation (LSTC).
[11] J. Trajkovski, R. Kunc, V. Pepel, I. Prebil, Flow and fracture behavior of high-strength armor steel PROTAC 500, Materials & Design, 66 (2015) 37-45.
[12] A. K. Gupta, V. K. Anirudh, S. K. Singh, Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures, Materials & Design, 43 (2013) 410-418.
[13] L. Gambirasio, E. Rizzi, On the calibration strategies of the Johnson-Cook strength model: Discussion and applications to experimental data, Materials Science and Engineering: A, 610 (2014) 370-413.
[14] J. Knust, F. Podszus, M. Stonis, B. A. Behrens, L. Overmeyer, G. Ullmann, Preform optimization for hot forging processes using genetic algorithms, The International Journal of Advanced Manufacturing Technology, 89 (5-8) (2017) 1623-1634.
[15] M. Zain-ul-abdein, D. Nélias, J.F. Jullien, A. I. Wagan, Thermo-mechanical characterisation of AA 6056-T4 and estimation of its material properties using Genetic Algorithm, Materials & Design, 31 (2010) 4302–4311.
[16] S. Keshavarz, A. R. Khoei, Z. Molaeinia, Genetic algorithm-based numerical optimization of powder compaction process with temperature-dependent cap plasticity model, The International Journal of Advanced Manufacturing Technology, 64 (5-8) (2013) 1057-1072.
[17] M. Rakhshkhorshid, S. H. Hashemi, Experimental study of hot deformation behavior in API X65 steel, Materials Science and Engineering: A, 573 (2013) 37-44.
[18] API Specifications 5L, Specifications for LinePipe, 44th Edition, American Petroleum Institute, USA (2007).
[19] A. He, G. Xie, H. Zhang, X. Wang, A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel, Materials & Design, 52 (2013) 677-685.
[20] A. Abbasi-Bani, A. Zarei-Hanzaki, M. H. Pishbin, N. Haghdadi, A comparative study on the capability of Johnson-Cook and Arrhenius-type constitutive equations to describe the flow behavior of Mg–6Al–1Zn alloy, Mechanics of Materials, 71 (2014) 52-61.
[21] A. I. Ferreiro, M. Rabaçal, M. Costa, A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues, Energy conversion and management, 125 (2016) 290-300.
[22] X. B. Wang, Effects of constitutive parameters on adiabatic shear localization for ductile metal based on Johnson-Cook and gradient plasticity models, Transactions of Nonferrous Metals Society of China 16 (6) (2006) 1362-1369.
[23] J. Dean, A. S-Fallah, P. M. Brown, L. A. Louca, T. W. Clyne, Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores, Composite Structures 93 (3) (2011) 1089-1095.
[24] D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, P.V. Sivaprasad, A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel, Materials Science and Engineering: A, 526 (2009) 1–6.
[25] O. E. Canyurt, H. R. Kim, K. Y. Lee, Estimation of laser hybrid welded joint strength by using genetic algorithm approach, Mechanics of Materials, 40 (10) (2008) 825–831.