[1] M. Berahmand and S. A. Sajjadi, Morphology evolution of γ′precipitates in GTD-111 Ni-based superalloy with heat treatment parameters, International Journal of Materials Research 104 (2013) 275-280.
[2] C.Yang, Y. Xu, Z. Zhang, H. Nie, X. Xiao, G. Jia, Improvement of stress rupture, life of GTD-111 by second solution heat treatment, Materials & Design 45 (2013) 308-315.
[3] M. Taheri, A. Salemi-Golezani, K. Shirvani, Effect of Aluminide coating on rapture behavior of Ni-based superalloy GTD-111 in high temperature, Advanced Material Research 457 (2012) 330-333.
[4] Gh. R. Razavi, J. Razavi, M. Taheri, M. Saboktakin, M 2013 Investigation mechanical properties and microstructure of pulsed Nd:YAG laser welding titanium, International Journal of Materials and Mechanics Engineering 2 No. 3 (2013).
[5] L. O. Osoba, R. K. Sidhu, O. A. Ojo, On preventing HAZ cracking in laser welded DS Rene 80 superalloy, Materials Science and Technology 27 (2011) 897-902.
[6] W. Wang, Li. Jiang, Li. Chaowen, Effects of post-weld heat treatment on microstructure and mechanical properties of Hastelloy N superalloy welds, Materials Today Communications 19 (2019) 230-237.
[7] R. A. Buckson, O. A. Ojo, Analysis of the influence of laser welding on fatigue crack growth behavior in a newly developed nickel-base superalloy, Journal of Materials Engineering and Performance 24 (2015) 353–361.
[8] M. Taheri, A. Halvaee, F. Kashani-Bozorg, Effect of Pre- and Post-weld Heat Treatment on Microstructure and Mechanical Properties of GTD-111 Superalloy Welds, Metals and Materials International 28 (2019).
[9] M. Montazeri, F. Malek-Ghaini, The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding, Material Characterization 67 (2012) 65-73.
[10] M. Pang C. Y. Zheng, Microstructure study of laser welding cast nickel-based superalloy K418, Journal of Materials Processing Technology 207 (2008) 271-275.
[11] A. T. Egbewande, H. R. Zhang, R.K. Sidhu, O. A. Ojo, Improvement in laser weldability of INCONEL 738 superalloy through microstructural modification, Metallurgical and Materials Transactions A 40 (2009) 2694-2704.
[12] L. O. Osoba, R. G. Ding, O. A. Ojo, Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy, Materials Characterization 65 (2012) 93-99.
[13] O. A. Ojo, N. L. Richards, M. C. Chaturvedi, Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy, Scripta Materialia 50 (2004) 641-646.
[14] M. F. Chiang, C. Chen, Induction-assisted laser welding of IN-738 nickel–base superalloy, Materials Chemistry and Physics 114 (2009) 415-419.
[15] M. A. Rezaei, H. Naffakh-Moosavy, The effect of pre-cold treatment on microstructure weldability and mechanical properties in laser welding of superalloys, Journal of Manufacturing Processes 34 (2018) 339-348.
[16] M. Montazeri, F. Mmalek, O. A. Ojo, Heat Input and the Liquation Cracking of Laser Welded IN738LC Superalloy, Welding Journal 92 (2013) 258-264.
[17] M. R. Jelokhani-Niaraki, N. B. Mostafa Arab, H Naffakh-Moosavy, M Ghoreishi, The systematic parameter optimization in the Nd:YAG laser beam welding of IN 625, International Journal of Advanced Manufacturing Technology 84 (2016) 2537-2546.
[18] M. J. Torkamany, S. Tahamtan, J. Sabbaghzadeh, Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser, Materials & Design 31 (2010) 458-465.
[19] M. Junaid, F. Nawaz Khan, K. Rahman, M. Nadeem Baig, Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti-5Al-2.5Sn alloy, Optics and Laser Technology 97(2017) 405-419.
[20] B. K. Lee, W. Y. Song, D. U. Kim, Effect of Bonding Temperatures on the Transient Liquid Phase Bonding of a Directionally Solidified Ni-based Superalloy, GTD-111, Metals and Materials International 13 (2007) 59-65.
[21] M. Taheri, A. Halvaee, S. F. Kashani-Bozorg 2019 Effect of Nd: YAG pulsed-laser welding parameters on microstructure and mechanical properties of GTD-111 superalloy joint, Materials Research Express 6 (2019).
[22] Sindo Kou, Welding metallurgy, John wiley publication, second edition, 2003.
[23] G. Asala, O. A. Ojo, On post-weld heat treatment cracking in TIG welded superalloy ATI 718Plus, Results in Physics 6 (2016) 196-198.
[24] K. Han, H. Wang, L. Shen, B. Zhang, Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy, Vacuum 157 (2018) 21-30.
[25] F. Caiazzo, V. Alfieri, F. Cardaropoli, V. Sergi, Investigation on edge joints of Inconel 625 sheets processed with laser welding, Optics and Laser Technology 93 (2017) 180-186.
[26] T. E. Bower, H. D. Brody, M. C. Flemings, Measurement of solute redistribution in dendritic solidification, AIME MET SOC TRANS 236 (1996) 615-624.
[27] K. Simant-Bal, J. D. Majumdar, A. R. Choudhury, Effect of post-weld heat treatment on the tensile strength of laser beam welded Hastelloy C-276 sheets at different heat inputs, Journal of Manufacturing Processes, 37 (2019) 578-594.
[28] E. Scheil, Remarks on the crystal layer formation, Zeitschrift für Metallkunde 34 (1942) 70-72.
[29] J. N. Dupont, Microstructural development and solidification cracking susceptibility of a stabilized stainless steel, Welding Journal 52 (1999) 253-263.
[30] H. Moosavy, M. R. Aboutalebi, S. H. Seyedein, An analytical algorithm to predict weldability of precipitation-strengthened nickel-base superalloys, Journal of Materials Processing Technology 212 (2012) 2210-2218.
[31] O. A. Ojo, N. L. Richards, M. C. Chaturvedi, Liquid film migration of constitutionally liquated γ′ in weld HAZ of IN738LC superalloy, Scripta Materialia 51 (2004) 141-146.
[32] A. Dadkhah, A. Kermanpur, On the precipitation hardening of the directionally solidified GTD-111 Ni-base superalloy: Microstructures and mechanical properties, Materials Science and Engineering: A 658 (2017) 79-86.
[33] J. J. Pepe, W. F. Salvage, Weld. J 46 (1967) 411s-26s.
[34] C. Yang, Y. Xu, Z. Zhang, H. Nie, Z. Shen, Improvement of stress-rupture life of GTD-111 by second solution heat treatment, Materials & Design 45 (2013) 308-31.
[35] M. Paidar, A. Khodabandeh, M. Lali Sarab, M. Taheri, Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets, Journal of Mechanical Science and Technology 29 (2015) 4639-4644.