[1] Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh, Thermal mechanisms of grain refinement in steels: A review, Metals and Materials International, in press, (2020) DOI: 10.1007/s12540-020-00700-1.
[2] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel, Materials Science and Engineering A 627 (2015) 230-240.
[3] M. Nouroozi, H. Mirzadeh, M. Zamani, Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel, Materials Science and Engineering A 736 (2018) 22-26.
[4] D. Das, P.P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel, Journal of Materials Science 44 (2009) 2957-2965.
[5] S. Nikkhah, H. Mirzadeh, M. Zamani, Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing, Materials Chemistry and Physics 230 (2019) 1-8.
[6] H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Formation of ultrafine grained dual phase steels through rapid heating, ISIJ International 51 (2011) 958-964.
[7] A.H. Jahanara, Y. Mazaheri, M. Sheikhi, Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels, Materials Science and Engineering A 764 (2019) 138206.
[8] M. Soleimani, H. Mirzadeh, C. Dehghanian, Effect of grain size on the corrosion resistance of low carbon steel, Materials Research Express 7 (2020) 016522.
[9] M. Calcagnotto, D. Ponge, and D. Raabe, Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels, Materials Science and Engineering A 527 (2010) 7832-7840.
[10] N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, S. Takaki, Dual phase structure formed by partial reversion of cold-deformed martensite, Materials Science and Engineering A 553 (2012) 128-133.
[11] Y.G. Deng, Y. Li, H. Di, R.D.K. Misra, Effect of Heating Rate during Continuous Annealing on Microstructure and Mechanical Properties of High-Strength Dual-Phase Steel, Journal of Materials Engineering and Performance 28 (2019) 4556-4564.
[12] N. Ormsuptave, V. Uthaisangsuk, Modeling of bake-hardening effect for fine grain bainite-aided dual phase steel, Materials and Design 118 (2017) 314-329.
[13] A. Ramazani, S. Bruehl, T. Gerber, W. Bleck, U. Prahl, Quantification of bake hardening effect in DP600 and TRIP700 steels, Materials and Design 57 (2014) 479-486.
[14] N. Ormsuptave, V. Uthaisangsuk, Effect of fine grained dual phase steel on bake hardening properties, Steel Research International 88 (2017) 1600150.
[15] M. Mazinani, W.J. Poole, Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel, Metallurgical and materials transactions A 38 (2007) 328-339.
[16] T. Waterschoot, K. Verbeken, Tempering kinetics of the martensitic phase in DP steel, ISIJ international 46 (2006) 138-146.
[17] N. Fonstein, M. Kapustin, N. Pottore, I. Gupta, O. Yakubovsky, Factors that determine the level of the yield strength and the return of the yield-point elongation in low-alloy ferrite-martensite steels, The Physics of Metals and Metallography 104 (2007) 315-323.
[18] Q. Han, A. Asgari, P.D. Hodgson, N. Stanford, Strain partitioning in dual-phase steels containing tempered martensite, Materials Science and Engineering A 611 (2014) 90-99.
[19] H. Li, S. Gao, Y. Tian, D. Terada, A. Shibata, N. Tsuji, Influence of tempering on mechanical properties of ferrite and martensite dual phase steel, Materials Today: Proceedings 2 (2015) S667-S671.
[20] H. Mirzadeh, M. Alibeyki, M. Najafi, Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual phase steel, Metallurgical and Materials Transactions A 48 (2017) 4565-4573.
[21] B. Gao, X. Chen, Z. Pan, J. Li, Y. Ma, Y. Cao, M. Liu, Q. Lai, L. Xiao, H. Zhou, A high-strength heterogeneous structural dual-phase steel, Journal of Materials Science 54 (2019) 12898-12910.
[22] T. Dutta, S. Dey, S. Datta, D. Das, Designing dual-phase steels with improved performance using ANN and GA in tandem, Computational Materials Science 157 (2019) 6-16.
[23] M. Alibeyki, H. Mirzadeh, M. Najafi, A. Kalhor, Modification of Rule of Mixtures for Estimation of the Mechanical Properties of Dual-Phase Steel, Journal of Materials Engineering and Performance 26 (2017) 2683-2688.
[24] M. Soleimani, H. Mirzadeh, C. Dehghanian, Unraveling the Effect of Martensite Volume Fraction on the Mechanical and Corrosion Properties of Low Carbon Dual Phase Steel, Steel Research International 91 (2020) 1900327.
[25] Y. Kayali, B. Anaturk, Investigation of electrochemical corrosion behavior in a 3.5 wt.% NaCl solution of boronized dual-phase steel, Materials and Design 46 (2013) 776-783.
[26] T. Allam, M. Abbas, Mechanical Properties, Formability, and Corrosion Behavior of Dual Phase Weathering Steels Developed by an Intercritical Annealing Treatment, Steel Research International 86 (2015) 231-240.
[27] S. Saadatkia, H. Mirzadeh, J.M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels, Materials Science and Engineering A 636 (2015) 196-202.
[28] G.E. Dieter, Mechanical Metallurgy, third ed., McGraw-Hill, 1988.
[29] G. Krauss, Tempering of lath martensite in low and medium carbon steels: assessment and challenges, Steel Research International 88 (2017) 1700038.
[30] A. Bag, K.K. Ray, E.S. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels, Metallurgical and Materials Transactions A 30 (1999) 1193-1202.
[31] G. Krauss, Steels processing, structure, and performance, 2nd ed, ASM International, 2015.
[32] S. Gündüz, Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels, Materials letters 63 (2009) 2381-2383.
[33] Y.C. Lin, G. Liu, M.S. Chen, J.L. Zhang, Z.G. Chen, Y.Q. Jiang, J. Li, Corrosion resistance of a two-stage stress-aged Al–Cu–Mg alloy: Effects of external stress, Journal of Alloys and Compounds 661 (2016) 221-230.
[34] Y.C. Lin, G. Liu, M.S. Chen, Y.C. Huang, Z.G. Chen, X. Ma, Y.Q. Jiang, J. Li, Corrosion resistance of a two-stage stress-aged Al–Cu–Mg alloy: Effects of stress-aging temperature, Journal of Alloys and Compounds 657 (2016) 855-865.
[35] O. Keleştemur, M. Aksoy, S. Yildiz, Corrosion behavior of tempered dual-phase steel embedded in concrete, International Journal of Minerals, Metallurgy and Materials 16 (2009) 43-50.