[1] Y. M. Hwang, P. L. Fan, C. H. Lin, Experimental study on Friction Stir Welding of copper metals, Journal of Materials Processing Technology 210 (2010) 1667-1672.
[2] K. Nakata, Friction stir welding of copper and copper alloys, Welding International 19 (2005) 929-933.
[3] Y. F. Sun, H. Fujii, Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper, Materials Science and Engineering: A, 527 (2010) 6879-6886.
[4] N. Srirangarajalu, G. M. Reddy, S. R. K. Rao, A. Rajadurai, Microstructure and Mechanical Behaviour of Friction Stir Welded Copper, Springer Berlin Heidelberg (2012) 458-465.
[5] L. Cederqvist, T. Öberg, Reliability study of friction stir welded copper canisters containing Sweden's nuclear waste, Reliability Engineering & System Safety 93 (2008) 1491-1499.
[6] K. Okamoto, Fabrication of Backing Plates of Copper Alloy by Friction Stir Welding, 3rd International Friction Stir Welding Conference, Kobe, Japan, 2001.
[7] Z. Y. Ma, A. H. Feng, D. L. Chen, J. Shen, Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Critical Reviews in Solid State and Materials Sciences 43 (2017) 269-333.
[8] S. W. Kallee, Industrial applications of friction stir welding, Friction Stir Welding, Woodhead Publishing (2010)118-163.
[9] L. Cederqvist, A Weld that Lasts for 100,000 Years: Friction Stir Welding of Copper Canisters, MRS Proceedings 807 (2003).
[10] K. Fuse, V. Badheka, Bobbin tool friction stir welding: a review, Science and Technology of Welding and Joining, 24 (2018) 277-304.
[11] G.Q. Wang, Y.-H. Zhao, Y.-Y. Tang, Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review, Acta Metallurgica Sinica (English Letters) 33 (2019) 13-29.
[12] M. K. Sued, D. Pons, J. Lavroff, E. H. Wong, Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process, Materials & Design 54 (2014) 632-643.
[13] Y. X. Huang, L. Wan, S. X. Lv, J. C. Feng, Novel design of tool for joining hollow extrusion by friction stir welding, Science and Technology of Welding and Joining 18 (2013) 239-246.
[14] F. F. Wang, W. Y. Li, J. Shen, Q. Wen, J. F. dos Santos, Improving weld formability by a novel dual-rotation bobbin tool friction stir welding, Journal of Materials Science & Technology 34 (2018) 135-139.
[15] S. Chen, H. Li, S. Lu, R. Ni, J. Dong, Temperature measurement and control of bobbin tool friction stir welding, The International Journal of Advanced Manufacturing Technology 86 (2015) 337-346.
[16] W.-B. Lee, S.-B. Jung, The joint properties of copper by friction stir welding, Materials Letters 58 (2004) 1041-1046.
[17] G. M. Xie, Z. Y. Ma, L. Geng, Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper, Scripta Materialia 57 (2007) 73-76.
[18] T. Sakthivel, J. Mukhopadhyay, Microstructure and mechanical properties of friction stir welded copper, Journal of Materials Science 42 (2007) 8126-8129.
[19] H. J. Liu, J. J. Shen, Y. X. Huang, L. Y. Kuang, C. Liu, C. Li, Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper, Science and Technology of Welding and Joining 14 (2013) 577-583.
[20] J. J. Shen, H. J. Liu, F. Cui, Effect of welding speed on microstructure and mechanical properties of friction stir welded copper, Materials & Design 31 (2010) 3937-3942.
[21] P. Xue, B. L. Xiao, Q. Zhang, Z. Y. Ma, Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling, Scripta Materialia 64 (2011) 1051-1054.
[22] Y. F. Sun, H. Fujii, The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints, Materials Science and Engineering: A, 528 (2011) 5470-5475.
[23] H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, E. Nazari, Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints, Materials & Design 35 (2012) 330-334.
[24] A. Kumar, L. S. Raju, Influence of Tool Pin Profiles on Friction Stir Welding of Copper, Materials and Manufacturing Processes 27 (2012) 1414-1418.
[25] H. Khodaverdizadeh, A. Heidarzadeh, T. Saeid, Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints, Materials & Design 45 (2013) 265-270.
[26] I. Galvão, R. M. Leal, D. M. Rodrigues, A. Loureiro, Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets, Journal of Materials Processing Technology 213 (2013) 129-135.
[27] J.W. Lin, H.C. Chang, M.-H. Wu, Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding, Journal of Manufacturing Processes 16 (2014) 296-304.
[28] J. Teimurnezhad, H. Pashazadeh, A. Masumi, Effect of shoulder plunge depth on the weld morphology, macrograph and microstructure of copper FSW joints, Journal of Manufacturing Processes 22 (2016) 254-259.
[29] N. Xu, Q. Song, Y. Bao, Enhanced strength and ductility of friction stir welded Cu joint by using large load with extremely low welding and rotation speed, Materials Letters 205 (2017) 219-222.
[30] X. C. Liu, Y. F. Sun, T. Nagira, K. Ushioda, H. Fujii, Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper, Science and Technology of Welding and Joining 24 (2018) 352-359.
[31] P. Sahlot, A. K. Singh, V. J. Badheka, A. Arora, Friction Stir Welding of Copper: Numerical Modeling and Validation, Transactions of the Indian Institute of Metals 72 (2019) 1339-1347.
[32] A. Heidarzadeh, Ö. M. Testik, G. Güleryüz, R. V. Barenji, Development of a fuzzy logic based model to elucidate the effect of FSW parameters on the ultimate tensile strength and elongation of pure copper joints, Journal of Manufacturing Processes 53 (2020) 250-259.
[33] A. Moaref, A. Rabiezadeh, Microstructural evaluation and tribological properties of underwater friction stir processed CP-copper and its alloy, Transactions of Nonferrous Metals Society of China 30 (2020) 972-981.
[34] R. M. Leal, N. Sakharova, P. Vilaça, D. M. Rodrigues, A. Loureiro, Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets, Science and Technology of Welding and Joining 16 (2013) 146-152.
[35] L.J. Zhang, A comparative study on the microstructure and properties of copper joint between MIG welding and laser-MIG hybrid welding, Materials & Design 110 (2016) 35-50.
[36] N. Xu, R. Ueji, Y. Morisada, H. Fujii, Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling, Materials & Design 56 (2014) 20-25.
[37] P. Nagabharam, D. Srikanth Rao, J. Manoj Kumar, N. Gopikrishna, Investigation of Mechanical Properties of Friction Stir Welded pure Copper Plates, Materials Today: Proceedings 5 (2018) 1264-1270.
[38] H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi, Theoretical and experimental investigation into friction stir welding of AA 5086, The International Journal of Advanced Manufacturing Technology 52 (2010) 531-544.
[39] L.E. Murr, A Review of FSW Research on Dissimilar Metal and Alloy Systems, Journal of Materials Engineering and Performance 19 (2010) 1071-1089.