[1] N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett, J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Composites Part B: Engineering, 75 (2015) 73-85.
[2] X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Carbon nanotube sponges, Advanced materials, 22 (2010) 617-621.
[3] X. Gui, H. Li, K. Wang, J. Wei, Y. Jia, Z. Li, L. Fan, A. Cao, H. Zhu, Dehai Wu, Recyclable carbon nanotube sponges for oil absorption, Acta Materialia, 59 (2011) 4798- 4804.
[4] A. Pantano, D. M.Parks, M. C.Boyce, Mechanics of deformation of single- and multi-wall carbon nanotubes, Journal of the Mechanics and Physics of Solids, 52 (2004) 789-821.
[5] R. Rafiee, R.M. Moghadam,On the modeling of carbon nanotubes: a critical review, Composites Part B: Engineering, 56 (2014) 435-449.
[6] K.I. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Composites Part B: Engineering, 36 (2005) 468-477.
[7] T. Xiao, K. Liao, Nonlinear elastic properties of carbon nanotubes subjected to large axial deformations, Physical Review B, 66 (2002) 153407 (1-4).
[8] D. W. Brenner, O. A. Shenderova, J. A., Harrison, S. J. Stuart, S. B. Sinnott. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, 14 (2002) 783-802.
[9] B. WenXing, Z. ChangChun, Cui WanZhao, Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics, Physica B, 352 (2004) 156-163.
[10] K. G. S. Dilrukshi, M. A. N. Dewapriya, U. G. A. Puswewala, Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics, Theoretical and Applied Mechanics Letters, 5 (2015), 167-172.
[11] Y. Liang, Q. Han, J. Ou, Bending Solutions of Cantilever Carbon Nanotubes and Molecular Dynamics Simulation, Journal of Computational and Theoretical Nanoscience, 11 (2014) 71-75.
[12] X. Ling, S.N. Atluri, A hyperelastic description of single wall carbon nanotubes at moderate strains and temperatures, Computer Modeling in Engineering and Sciences, 21 (2007) 81-91
[13] X. Ling, S. N. Atluri, hyperelastic description of single wall carbon nanotubes, Journal of applied physics, 101 (2007), 064316 (1-4).
[14] E. I. Saavedra Flores, S. Adhikari, M. I. Friswell, F. Scarpa, Hyperelastic modelling of post-buckling response in single wall carbon nanotubes under axial compression, Procedia Engineering, 10 (2011) 2256–2261.
[15] R.W. Ogden, Non-linear elastic deformations, Courier Corporation, 1997.
[16] E.I. Saavedra Flores, S. Adhikari, M.I. Friswell, F. Scarpa, Hyperelastic finite element model for single wall carbon nanotubes in tension, Computational Materials Science, 50 (2011) 1083-1087.
[17] D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical review B, 42 (1990) 9458-9471.
[18] H. Darijani, R. Naghdabadi, Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta mechanica, 213 (2010) 235-254.
[19] M. Hosseinzadeh, M. Ghoreishi, K. Narooei, Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone, Journal of the mechanical behavior of biomedical materials, 59 (2016) 393-403.
[20] A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties, International Journal of Solids and Structures, 43 (2006) 6832-6854.
[21] P. S. Rao, S., Anandatheertha, G. N. Naik, S. Gopalakrishnan, Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach. Sadhana, 40 (2015) 1301-1311.
[22] C. Li, TW. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Composites Science and Technology, 63 (2003) 1517- 1524.
[23] K. M. Liew, X. Q. He, C. H. Wong, On the study of elastic and plastic properties of multi walled carbon nanotubes under axial tension using molecular, Acta Materialia, 52 (2004) 2521-2527.
[24] Z. c. Tu, Z. c. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tube with the effective Young’s moduli dependent on layer number. Physical Review B, 65 (2002) 1-4.
[25] E. Mohammadpour, M. Awang. "Nonlinear finite-element modeling of graphene and single-and multi-walled carbon nanotubes under axial tension. Applied Physics A, 106 (2012) 581-588.
[26] E. Mohammadpour, M. Awang, A finite element model for predicting the tensile behavior of carbon naotube, 2011 National Postgraduate Conference, (2011) 1-6.
[27] J.R. Xiao, B.A. Gama, J.W. Gillespie Jr, An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes, International Journal of Solids and Structures, 42 (2005) 3075-3092.
[28] W. W. Feng, J. O. J. s. Hallquist, On Mooney-Rivlin constants for elastomers, stress (force per unit undeformed area), 1 (2017) 1-10.
[29] C. Renaud, J. M. Cros, Z. Q. Feng, B. Yang, The Yeoh model applied to the modeling of large deformation contact/impact problems, International Journal of Impact Engineering, 36 (2009) 659-666.
[30] T. Beda, An approach for hyperelastic model-building and parameters estimation a review of constitutive models, European Polymer Journal, 50 (2014) 97-108.
[31] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287 (2000) 637-640.