[1] E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications, The International Journal of Advanced Manufacturing Technology 100 (2019) 1647-1694.
[2] E. Bagherpour, M. Reihanian, N. Pardis, R. Ebrahimi, T.G. Langdon, Ten years of severe plastic deformation (SPD) in Iran, part I: equal channel angular pressing (ECAP), Iranian Journal of Materials Forming 5 (2018) 71-113.
[3] M. Reihanian, E. Bagherpour, N. Pardis, R. Ebrahimi, Nobuhiro Tsuji, Ten years of severe plastic deformation (SPD) in Iran, part II: accumulative roll bonding (ARB), Iranian Journal of Materials Forming 5 (2018) 1-25.
[4] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Progress in Materials Science 53 (2008) 893-979.
[5] Y. Beygelzimer, V. Varyukhin, S. Synkov, D. Orlov, Useful properties of twist extrusion, Materials Science and Engineering A 503 (2009) 14-17.
[6] M. I. Latypov, I. V. Alexandrov, Y. E. Beygelzimer, S. Lee, H. S. Kim, Finite element analysis of plastic deformation in twist extrusion, Computational Materials Science: 60 (2012) 194-200.
[7] Y. Beygelzimer, R. Kulagin, M. I. Latypov, V. Varyukhin, H. S. Kim, Off-axis twist extrusion for uniform processing of round bars, Metals and Materials International 21 (2015) 734-740.
[8] M. Shahbaz, N. Pardis, R. Ebrahimi, B. Talebanpour, A novel single pass severe plastic deformation technique: Vortex extrusion, Materials Science and Engineering A 530 (2011)469-472.
[9] H. Ataei, M. Shahbaz, H. S. Kim, N. Pardis, Finite element analysis of severe plastic deformation by rectangular vortex extrusion (RVE), Metals and Materials International (2020).
[10] M. Shahbaz, N. Pardis, J. G. Kim, R. Ebrahimi, H. S. Kim, Experimental and finite element analyses of plastic deformation behavior in vortex extrusion, Materials Science and Engineering A 674 (2016) 472-479.
[11] M. Shahbaz, R. Ebrahimi, H. S. Kim, Streamline approach to die design and investigation of material flow during vortex extrusion process, Applied Mathematical Modelling 40 (2015) 3550-3560.
[12] M. Shahbaz, J. G. Kim, R. Ebrahimi, H. S. Kim, Prediction of extrusion pressure in vortex extrusion using a streamline approach, Iranian Journal of Materials Forming 4 (2017) 52-56.
[13] G. Ranjbari, A. Doniavi, M. Shahbaz, Numerical modelling and simulation of vortex extrusion as a severe plastic deformation technique using response surface methodology and finite element analysis, Metals and Materials International, in print, 7 (2020).
[14] G. Ranjbari, A. Doniavi, M. Shahbaz, R. Ebrahimi, Effect of processing parameters on the strain inhomogeneity and processing load in vortex extrusion of Al-Mg-Si alloy, Metals and Materials International, (2020).
[15] Design Expert 11, Stat-Ease, Inc.
[16] SH. Molaei, M. Shahbaz, R. Ebrahimi, The relationship between constant friction factor and coefficient of friction in metal forming using finite element analysis, Iranian Journal of Materials Forming 1 (2014) 14-22.
[17] DEFORM-3D V10, Scientific Forming Technologies Corporation (SFTC).
[18] N. Q. Chinh, G. Horváth, Z. Horita, T. G. Langdon, A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain, Acta Materialia 52 (2004) 3555-3563.
[19] U. M. Iqbal, V. S. Kumar, S. Gopalakannan, Application of response surface methodology in optimizing the process parameters of twist extrusion process for AA6061-T6 aluminium alloy, Measurement, 94 (2016) 126-138.
[20] M. Shahbaz, N. Pardis, J. Moon, R. Ebrahimi, H. S. Kim, Microstructural and mechanical properties of the material processed by streamline proposed vortex extrusion, Metals and Materials International, (2020) Accepted.