[1] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, W.T. Zhang, Additive manufacturing of metallic components-Process, structure and properties, Progress in Materials Science, 92 (2018) 112-224.
[2] F. A. McClintock, A Criterion for Ductile Fracture, Journal of Applied Mechanics, 35(2) (1968) 363-371.
[3] J.R. Rice, D. M. Tracy, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and the Physics of the Solids, 17(3) (1969) 201-217.
[4] Z. Chen, C. Butcher, Micromechanics Modelling of Ductile Fracture, Springer, London (2013).
[5] A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1- Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, 92(1) (1977) 2-15.
[6] V. Tvregaard, Influence of voids on shear band instabilities under plane strain conditions, International Journal of Fracture, 17 (4) (1981) 389-407.
[7] V. Tvregaard, A. Neddleman, Effects of nonlocal damage in porous plastic solids, International Journal of Solids and Structures, 39 (8) (1984) 1063-11077.
[8] Y. Amani, S. Dancette, P. Delroisse, A. Simar, E. Maire, Compression of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element approaches, Acta Materialia, 159 (2018) 395-407.
[9] M. Leary, M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y. Suna, M. Qian, M. Eastona, M. Brandt, Selective laser melting (SLM) of AlSi12Mg lattice structures, Materials and Design, 98 (2016) 344-357.
[10] C. Li, H. Lei, Y. Liu, X. Zhang, J. Xiong, H. Zhou, D. Fang, Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting, International Journal of Mechanical Sciences, 145 (2018) 389-399.
[11] E.F.A. Irmak, T. Troster, T., 2019. “Fracture prediction of additively manufactured AlSi10Mg materials, Procedia Structural Integrity, 21 (2019) 190-197.
[12] M. Costas, D. Morin, M. de Lucio, M. Langseth, Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading, European Journal of Mechanics / A Solids, 81 (2020) 103966.
[13] J. Samei, M. Amirmaleki, M. Shirinzadeh Dastgiri, C.E. Marinelli, D.E. Green, In-situ X-ray tomography analysis of the evolution of pores during deformation of AlSi10Mg fabricated by selective laser melting, Materials Letters, 255 (2018) 126512.
[14] P. Delroisse, P.J. Jacques, E. Maire, O. Rigo, A. Simar, Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting, Scripta Materialia, 141 (2017) 32-35.
[15] Z. Dong, X. Zhang, W. Shi, H. Zhou, H. Lei, J. Liang, Study of size effect on microstructure and mechanical properties of AlSi10Mg samples made by selective laser melting, Materials (Basel) (2018), 11.
[16] K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization, Materials Science and Technology, 31 (8) (2015) 917-923.
[17] L. Jing Chen, W. Hou, X. Wang, S. Chu, Z. Yang, Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg, Chinese Journal of Aeronautics, 33(7) (2020) 2043-2054.
[18] M. Liu, N. Takata, A. Suzuki, M. Kobashi, Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting, Journal of Materials Science and Technology, 36 (2019) 106-117.