[1] P. R. Soni, Mechanical alloying fundamentals and applications, Cambridge International Science Publishing, 2001.
[2] M. S. El-Eskandarany, Mechanical alloying for fabrication of advanced engineering materials, Noyes Publications, 2001.
[3] R. C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, 2006.
[4] M. J. Donachie, S. J. Donachie, Selection of Superalloys for Design, Handbook of Materials Selection, John Wiley & Sons, Inc., 2007, 293-334.
[5] C. Suryanarayana, N. Al-Aqeeli, Progress in Materials Science, 58 (2013) 383-502.
[6] N. Chawla, X. Deng, M. Marucci, K. S. Narasimhan, Effect of density on the microstructure and mechanical behavior of powder metallurgy Fe-Mo-Ni steels, Advanced Powder Metallurgy Parts and Materials, Edited by Metal Powder Industries Federation, Princeton, NJ, 2003.
[7] S. Parthasarathi, T. Prucher, C. J. Yu, J. Jo, R. J. Henry, Determination of dynamic elastic properties of powder metallurgy components, Review of Progress in Quantitative Nondestructive Evaluation, 12 (1993) 1631-1638.
[8] A. Salak, Ferrous Powder Metallurgy, Cambridge International Science Publishing, 1995.
[9] E. S. Huron, R. L. Casey, M. F. Henry, D.P. Mourer, The influence of alloy chemistry and powder production methods on porosity in a P/M nickel-base superalloy, Superalloys 1996, The Minerals and Metallic Materials Society, 1996.
[10] H. N. Yoshimura, A. L. Molisani, N. E. Narita, P. F. Cesar, H. Goldenstein, Porosity dependence of elastic constants in aluminum nitride ceramics, Materials Research, 10 (2007) 127-133.
[11] J. Kovacik, Correlation between elastic modulus, shear modulus, Poisson's ratio and porosity in porous materials, Advanced Engineering Materials, 10 (2008) 250-252.
[12] A. V.Manoylov, F. M. Borodich, H. P. Evans, Modelling of elastic properties of sintered porous materials, Proceedings of Royal Society A, 469 (2013) 201-206.
[13] E. Salahinejad, R. Amini, M. J. Hadianfard, Contribution of nitrogen concentration to compressive elastic modulus of 18Cr–12Mn–xN austenitic stainless steels developed by powder metallurgy, Materials and Design, 31 (2010) 2241-2244.
[14] T. Otomo, H. Matsumoto, N. Nomura, A. Chiba, Influence of cold-working and subsequent heat-treatment on Young’s modulus and strength of Co-Ni-Cr-Mo alloy, Materials Transaction, 51 (2010) 434-441.
[15] W. F. Druyvesteyn, B. S. Blaisse, Change in the modulus of elasticity of copper after deformation in the temperature range from 4.2-7.8 °K, Physica 28 (1962) 695-700.
[16] M. O' Dowd, W. Ruch, E. Starke, Dependence of elastic modulus on microstructure in 2090-type alloys, Journal de Physique, C3 (1987) 565-576.
[17] G. H. Gessinger, Powder metallurgy of superalloys, Elsevier Ltd, 1984.
[18] M. Levy, H. Bass, R. Stern, Handbook of Elastic Properties of Solids, Liquids, and Gases, Four-Volume Set, Academic press, 2001.
[19] S. Ochiai, Mechanical properties of metallic composites, CRC Press, 1994.
[20] Nickel Development Institute, High– temperature high –strength nickel based alloys, 393, 1995.
[21] http://www.twi-global.com/ what are the common properties of oxide dispersion strengthened ODS alloys, 2016.
[22] ASM International, Atlas of stress-strain curves 2nd ed, ASM, 2002.
[23] Pacific Northwest National Laboratory, Materials properties database for selection of high-temperature alloys and concepts of alloy design for SOFC applications, PNNL-14116, 2002.
[24] http://specialmetals.ir, Special Metals Corporation, Inconel alloy MA754, USA.
[25] J. H. Lee, K .W. Paik, L. J. Park, Y. G. Kim, J. H. Tundermann, J. J. deBarbadillo, The effect of high temperature deformation conditions on the secondary recrystallization of Ma754 plate, Scripta Materialia, 38 (1998) 789-794.
[26] T. R. Bieler, A. T. Mohamed, Z. Jin, M. J. Blake, The effects of hot rolling on texture and recrystallization of Ma754 sheet, Scripta Metallurgica et Materialia, 27 (1992) 149-154.
[27] J. Wang, W. Yuan, R. S. Mishra, I. Charit, Microstructural evolution and mechanical properties of friction stir welded ODS alloy MA754, Journal of Nuclear Materials, 442 (2013) 1-6.
[28] I. Kovács, L. Zsoldos, D. ter Haar, Dislocations and Plastic Deformation, Elsevier Ltd., 1973.
[29] M. Gonzalez, J. Pena, J. M. Manero, F. J. Gil, Influence of cold work in the elastic modulus of the Ti-16.2Hf-24.8Nb-1Zr alloy characterized by instrumented nanoindentation, Key Engineering Materials, 423 (2010) 113-118.
[30] A. Haleem, Young’s modulus decrease after cold forming, Master of Science Thesis, Delft University of Technology, 2009.
[31] J. Solin, J. Alhainen, M. Chauhan, Influence of cold-work on the elastic properties of austenitic stainless steels, 7th European Stainless Steel Conference, 2011.
[32] W. Lems, The change of Young's modulus after deformation at low temperature and its recovery, Doctoral thesis, Delft University of Technology, 1963.