Synthesis and Consolidation of Ag/ZnO Composite Powders via SPS Method

Document Type : Research Paper

Author

Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

The present research was conducted to synthesize and densify Ag/8wt.% ZnO composites via co-precipitation and spark plasma sintering (SPS) methods. The initial precipitates were precipitated by adding ammonium hydrogen carbonate solution to a solution mixture of silver and zinc nitrate. The precipitates were characterized by using the particle size analyzer and X-ray diffraction techniques. The precipitates were calcined at 500°C and consolidated with SPS method for 5 and 10 min at 540°C under 35 MPa in vacuum. The results showed that rearrangement and bulk deformation had a significant effect on densification of the composite powders. The scanning electron microscopy investigations revealed that the SPSed composites had nearly dense microstructures with homogenous and fine dispersion of ZnO particles within the silver matrix. Moreover, it was confirmed that prolonging the sintering time from 5 to 10 min had no significant effect on the microstructure, relative density and hardness of the samples. Composites with relative densities above 99% and 62 HV hardness were synthesized through the applied procedure.

Keywords


[1] H. Singh, G. Singh Brar, H. Kumar, V. Aggarwal, A review on metal matrix composite for automobile applications,  Materials Today: Proceedings, 43(1) (2021) 320-325.
[2] K. K. Chawla, Composite Materials, Science and Engineering, Springer, New York, 2012, pp. 325-326.
[3] N. Chawla, K.K. Chawla, Metal Matrix Composites, Springer, New York, 2006, pp.239-243.
[4] T. X. Lu, C. G. Chen, Z. M. Guo, P. Li, M. X. Guo, Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in-situ reaction, International Journal of Minerals, Metallurgy and Materials,  26(11) (2019) 1477-1483.
[5] M. Ardestani, H. R. Rezaie, H. Arabi, H. Razavizadeh, The effect of sintering temperature on densification of nanoscale dispersed W–20–40wt.% Cu composite powders, International Journal of Refractory Metals and Hard Materials,27(5) (2009) 862-867.
[6] M. Ardestani, Thermochemical synthesis and sintering of silver-8 wt.% copper oxide nanocomposite powders, International Journal of Materials Research,106(12) (2015) 1294-1297.
[7] ASM International Handbook Committee, ASM Handbook Vol. 7 Powder Metallurgy, ASM International, Materials Park, Ohio, 2015, pp.790-798
[8] A. Pandey, P. Verma, O. P. Pandey, Comparison of properties of silver-tin oxide electrical contact materials through different processing routes, Indian Journal of Engineering and Materials Science, 15(3) (2008) 236-240.
[9] L. Münster, P. Bazant, M. Machovsky‎, I. Kuritka, Microwave-assisted hydrothermal synthesis of Ag/ZnO sub-microparticles, Materiali in Tehnologije, 49(2) (2015) 281-284.
[10] D.Guzman, C. Aguilar, P. Rojas, J. M. Criado, M. J. Dianez, R. Espinoza, A. Guzman, C. Martinez, Production of Ag−ZnO powders by hot mechanochemical processing, Transactions of Nonferrous Metals Society of China, 29(2) (2019) 365-373.
[11] P. B. Joshi, V. J. Rao, B. R. Rehani, Silver-zinc oxide electrical contact materials by mechanochemical synthesis route, Indian Journal of Pure and Applied Physics,45(1) (2007) 9-15.
[12] F. S. Jazi, N. Parvin, M. R. Rabiei, M. R. Tahriri, Z. M. Shabestari, A. R. Azadmehr, The effect of the synthesis route on the grain size and morphology of ZnO/Ag nanocomposite, Journal of Ceramic Processing Research, 13(5) (2012) 523–526.
[13] M. Ardestani, M. Zakeri, M. J. Nayyeri, M. R. Babollhavaejie, Synthesis of Ag–ZnO composites via ball milling and hot pressing processes, Materials Science-Poland, 32(1) (2014) 121-125.
[14] P. Cavaliere, Spark Plasma Sintering of Materials, Springer Nature, Switzerland, 2019, pp.3-20.
[15] Y. Wang, X. Ran, G. Barber, Q. Zou, Microstructure and sintering mechanism of C/Cu composites by mechanical alloying/spark plasma sintering, Journal of Composite Materials, 51(21) (2017) 3065-3074.
[16] A. Kokabi, M. Ardestani, M. Tamizifar, A. Abbasi, Characterization of TiO2-reinforced bronze matrix composite prepared by SPS and PSR densification methods, JOM, 71(8) (2019) 2522-2530.
[17] Z. Branković, D. Luković-Golić, A. Radojković, J. Ćirković, D. Pajić, Z. Marinković-Stanojević, J. Xing, M. Radović, G. Li, G. Branković, Spark plasma sintering of hydrothermally synthesized bismuth ferrite, Processing and Application of Ceramics,10(4) (2016) 257-264.
[18] N. Ray, B. Kempf, G. Wiehl, T. Mützel, F. Heringhaus, L. Froyen, K. Vanmeensel, J. Vleugels, Novel processing of Ag-WC electrical contact materials using spark plasma sintering, Materials & Design, 121 (2017) 262-271.
[19]  H. Li, X. Wang, Y. FeiH. Zhang, J. LiuZ. LiY. Qiu, Effect of electric load characteristics on the arc erosion behavior of Ag-8wt.% Ni electrical contact material prepared by spark plasma sintering, Sensors and Actuators A: Physical, 326 (2021) 112718.
[20] M. Ghambari, T. Ebadzadeh, A. H. Pakseresht, E. Ghasali, Preparation of Ag/reduced graphene oxide reinforced copper matrix composites through spark plasma sintering: An investigation of microstructure and mechanical properties, Ceramics International, 46(9) (2020) 13569-13579.
[21] M. Ardestani, Chemical synthesis and densification behavior of Ag/ZnO metal matrix composite. Materiali in Technologije, 50(2) (2016) 281-286.
[22] W. D. Callister, D. G. Rethwisch, Materials Science and Engineering; An Introduction, John Wiley & Sons, Inc., USA, 2010, pp.523-525.
[23] R. M. German, Sintering from empirical observations to scientific principles, Elsevier, USA, 2014, pp.141-183.
[24] S. Diouf, A. Molinari, Densification mechanisms in spark plasma sintering: Effect of particle size and pressure, Powder Technology, 221 (2012) 220-227.
[25] S. Devaraj, S. Sankarany and R. Kumar, Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt.% Cu alloy, Acta Metallurgica Sinica (English Letters), 26(6) (2013) 761-771.
[26] S. R. Oke, O. O. Ige, O. E. Falodun, B. A. Obadele, M. B. Shongwe, P. A. Olubambi, Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite. Journal of Materials Research and Technology, 7(2) (2018) 126-134.
[27] Z. Y. Hu, Z. H. Zhang, X. W. Cheng, F. C. Wang, Y. F. Zhang, S. L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Materials & Design, 191 (2020) 108662.
 [28] D. Dunand, A. Mortensen, Thermal mismatch dislocations produced by large particles in a strain-hardening matrix, Materials Science and Engineering: A, 135 (1991) 179-184.
[29] K. T. Kashyap, C. Ramachandra, C. Dutta, B. Chatterji, Role of work hardening characteristics of matrix alloys in the strengthening of metal matrix composites, Bulletin of Materials Science,  23(1) (2000) 47-49.
[30] K. K. Chawla, Ceramic Matrix Composites, Springer Science, New York, 2003, pp.106-138.