[1] A. Heidarzadeh, Tensile behavior, microstructure, and substructure of the friction stir welded 70/30 brass joints: RSM, EBSD, and TEM study, Archives of Civil and Mechanical Engineering, 19(1) (2019) 137-146.
[2] A. Heidarzadeh, H.M. Laleh, H. Gerami, P. Hosseinpour, M.J. Shabestari, R. Bahari, The origin of different microstructural and strengthening mechanisms of copper and brass in their dissimilar friction stir welded joint, Materials Science and Engineering: A, 735 (2018) 336-342.
[3] A. Heidarzadeh, R.V. Barenji, V. Khalili, G. Güleryüz, Optimizing the friction stir welding of the α/β brass plates to obtain the highest strength and elongation, Vacuum, 159 (2019) 152-160.
[4] M. Galai, J. Ouassir, M. Ebn Touhami, H. Nassali, H. Benqlilou, T. Belhaj, K. Berrami, I. Mansouri, B. Oauki, α-Brass and (α+β) brass degradation processes in azrou soil medium used in plumbing devices, Journal of Bio- and Tribo-Corrosion, 3(3) (2017) 30.
[5] M.P. Alam, A.N. Sinha, Fabrication of third generation Al–Li alloy by friction stir welding: a review, Sādhanā, 44(6) (2019) 153.
[6] O.M. Jarrah, M.A. Nazzal, B.M. Darras, Numerical modeling and experiments of Friction Stir Back Extrusion of seamless tubes, CIRP Journal of Manufacturing Science and Technology, 31 (2020) 165-177.
[7] M. Saad, O. Jarrah, M. Nazzal, B. Darras, H. Kishawy, Sustainability-based evaluation of friction stir back extrusion of seamless tubular shapes, Journal of Cleaner Production, 267 (2020) 121972.
[8] G. Jamali, S. Nourouzi, R. Jamaati, FSBE process: A technique for fabrication of aluminum wire with randomly oriented fine grains, Materials Letters, 241 (2019) 68-71.
[9] M. Shojaeefard, M. Akbari, P. Asadi, Multi objective optimization of friction stir welding parameters using FEM and neural network, International journal of precision engineering and manufacturing, 15(11) (2014) 2351-2356.
[10] M. Akbari, M.H. Shojaeefard, P. Asadi, A. Khalkhali, Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II, Transactions of Nonferrous Metals Society of China, 27(11) (2017) 2317-2333.
[11] M.H. Shojaeefard, R.A. Behnagh, M. Akbari, M.K.B. Givi, F. Farhani, Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm, Materials & Design, 44 (2013) 190-198.
[12] P. Asadi, M. Akbari, H. Karimi-Nemch, 12 - Simulation of friction stir welding and processing, in: M.K.B. Givi, P. Asadi (Eds.), Advances in Friction-Stir Welding and Processing, Woodhead Publishing, 2014, pp. 499-542.
[13] M.H. Shojaeefard, M. Akbari, A. Khalkhali, P. Asadi, Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B4C/aluminum composites, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 232(8) (2018) 637-651.
[14] S. Tutunchilar, M. Haghpanahi, M.K. Besharati Givi, P. Asadi, P. Bahemmat, Simulation of material flow in friction stir processing of a cast Al–Si alloy, Materials & Design, 40 (2012) 415-426.
[15] I. Dinaharan, S. Zhang, G. Chen, Q. Shi, Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing, Materials Science and Engineering: A, 772 (2020) 138793.
[16] M. Akbari, A. Khalkhali, S.M.E. Keshavarz, E. Sarikhani, Investigation of the effect of friction stir processing parameters on temperature and forces of Al–Si aluminum alloys, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232(3) (2018) 213-229.
[17] P. Zolghadr, M. Akbari, P. Asadi, Formation of thermo-mechanically affected zone in friction stir welding, Materials Research Express, 6(8) (2019) 086558.
[18] L. Wang, Z. Zhang, H. Zhang, H. Wang, K.S. Shin, The dynamic recrystallization and mechanical property responses during hot screw rolling on pre-aged ZM61 magnesium alloys, Materials Science and Engineering: A, 798 (2020) 140126.
[19] Z. Zhang, D. Liu, Y. Wang, Y. Pang, F. Zhang, Y. Yang, J. Wang, A novel method for preparing bulk ultrafine-grained material: Three dimensional severe plastic deformation, Materials Letters, 276 (2020) 128209.
[20] Q. Wang, Z. Liu, B. Wang, Q. Song, Y. Wan, Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti-6Al-4V in high-speed machining, The International Journal of Advanced Manufacturing Technology, 82(9) (2016) 1725-1736.
[21] A. Rahimzadeh Ilkhichi, R. Soufi, G. Hussain, R. Vatankhah Barenji, A. Heidarzadeh, Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA 7020 aluminum alloy joints, Metallurgical and Materials Transactions B, 46(1) (2015) 357-365.
[22] M. Akbari, P. Asadi, M.K. Besharati Givi, G. Khodabandehlouie, 13 - Artificial neural network and optimization, in: M.K.B. Givi, P. Asadi (Eds.), Advances in Friction-Stir Welding and Processing, Woodhead Publishing, 2014, pp. 543-599.
[23] Y.C. Du, A. Stephanus, Levenberg-Marquardt neural network algorithm for degree of arteriovenous fistula stenosis classification using a dual optical photoplethysmography sensor, Sensors, 18(7) (2018) 2322.
[24] P. Asadi, M. Akbari, M.K. Besharati Givi, M. Shariat Panahi, Optimization of AZ91 friction stir welding parameters using Taguchi method, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 230(1) (2016) 291-302.