[1] Q. Liu, Y. Lin, G. Sun, Q. Li, Lightweight design of carbon twill weave fabric composite body structure for electric vehicle, Composite Structures, 97 (2013) 231-238.
[2] S. Davey, R. Das, W.J. Cantwell, S. Kalyanasundaram, Forming studies of carbon fibre composite sheets in dome forming processes, Composite Structures, 97 (2013) 310-316.
[3] S.F. Hwang, K. Hwang, Stamp forming of locally heated thermoplastic composites, Composites Part A: Applied Science and Manufacturing, 33(5) (2002) 669-676.
[4] W. Hufenbach, R. Böhm, M. Thieme, A. Winkler, E. Mäder, J. Rausch, M. Schade, Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications, Materials & Design, 32(3) (2011) 1468-1476.
[5] W. Wu, L. Xie, B. Jiang, G. Ziegmann, Simultaneous binding and toughening concept for textile reinforced pCBT composites: Manufacturing and flexural properties, Composite Structures, 105 (2013) 279-287.
[6] H. Parton, I. Verpoest, In situ polymerization of thermoplastic composites based on cyclic oligomers, Polymer composites, 26(1) (2005) 60-65.
[7] J.L. Thomason, U. Nagel, L. Yang, D. Bryce, A study of the thermal degradation of glass fibre sizings at composite processing temperatures, Composites Part A: Applied Science and Manufacturing, 121 (2019) 56-63.
[8] L. Ye, K. Friedrich, J. Kästel, Y.W. Mai, Consolidation of unidirectional CF/PEEK composites from commingled yarn prepreg, Composites science and technology, 54(4) (1995) 349-358.
[9] C. Mayer, X. Wang, M. Neitzel, Macro-and micro-impregnation phenomena in continuous manufacturing of fabric reinforced thermoplastic composites, Composites Part A: Applied Science and Manufacturing, 29(7) (1998) 783-93.
[10] S.H. Han, H.J. Oh, S.S. Kim, Evaluation of the impregnation characteristics of carbon fiber-reinforced composites using dissolved polypropylene, Composites science and technology, 91(2014) 55-62.
[11] N. Ferreira, C. Capela, J.M. Ferreira, J.M. Costa, Effect of water and fiber length on the mechanical properties of polypropylene matrix composites, Fibers and Polymers, 15(5) (2014) 1017-1022.
[12] M. Jonoobi, Y. Aitomäki, A.P. Mathew, K. Oksman, Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties, Composites Part A: Applied Science and Manufacturing, 58 (2014) 30-35.
[13] V. Zal, H. Moslemi Naeini, A.R. Bahramian, A.H. Behravesh, B. Abbaszadeh, Investigation and analysis of glass fabric/PVC composite laminates processing parameters, Science and Engineering of Composite Materials, 25(3) (2018) 529-540.
[14] V. Zal, H. Moslemi Naeini, A.R. Bahramian, B. Abbaszadeh, Experimental evaluation of blanking and piercing of PVC based composite and hybrid laminates, Advances in Manufacturing, 4(3) (2016) 248-256.
[15] V. Zal, H. Moslemi Naeini, A.R. Bahramian, J. Sinke, Investigation of the effect of temperature and layup on the press forming of polyvinyl chloride-based composite laminates and fiber metal laminates, The International Journal of Advanced Manufacturing Technology, 89(1-4) (2017) 207-217.
[16] V. Zal, H. Moslemi Naeini, A.R. Bahramian, H. Abdollahi, A.H. Behravesh, Investigation of the effect of processing temperature on the elastic and viscoelastic properties of PVC/fiberglass composite laminates, Modares Mechanical Engineering, 15(11) (2016) 9-16.
[17] K.J. Narayana, R.G. Burela, A review of recent research on multifunctional composite materials and structures with their applications, Materials Today: Proceedings, 5(2) (2018) 5580-5590.
[18] M.M. Maciel, S. Ribeiro, C. Ribeiro, A. Francesko, A. Maceiras, J.L. Vilas, S. Lanceros-Méndez, Relation between fiber orientation and mechanical properties of nano-engineered poly (vinylidene fluoride) electrospun composite fiber mats, Composites Part B: Engineering, 139 (2018) 146-54.
[19] J.Köbler, M.Schneider, F.Ospald, H.Andrä, R.Müller, Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts. Computational Mechanics. (2018) 61(6):729-50.
[20] I. Maher, M.E.H. Eltaib, A.A. Sarhan, R.M. El-Zahry, Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in CNC end milling—ANFIS modeling, The International Journal of Advanced Manufacturing Technology, 74(1-4) (2014) 531-537.
[21] M. Safari, V. Tahmasbi A.H. Rabiee, Investigation into the automatic drilling of cortical bones using ANFIS-PSO and sensitivity analysis, Neural Computing and Applications, (2021) 1-19.
[22] A. Yaghoobi, M. Bakhshi-Jooybari, A. Gorji, H. Baseri, Application of adaptive neuro fuzzy inference system and genetic algorithm for pressure path optimization in sheet hydroforming process, The International Journal of Advanced Manufacturing Technology, 86(9) (2016) 2667-2677.
[23] Y.D. Asl, Y.Y. Woo, Y. Kim Y.H. Moon, Non-sorting multi-objective optimization of flexible roll forming using artificial neural networks, The International Journal of Advanced Manufacturing Technology, 107(5) (2020) 2875-2888.
[24] M. Safari, M. Salamat-Talab, A. Abdollahzadeh, A. Akhavan-Safar, L.F.M. da Silva, Experimental investigation, statistical modeling and multi-objective optimization of creep age forming of fiber metal laminates. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(11) (2020) 1389-1398.
[25] M. Valente, F. Sarasini, F. Marra, J. Tirillò, G. Pulci, Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization, Composites Part A: Applied Science and Manufacturing, 42(6) (2011) 649-657.
[26] R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin, Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites, Materials & Design, 67 (2015) 173-179.
[27] J.A.M. Ferreira, C. Capela, J.D. Costa, A study of the mechanical behaviour on fibre reinforced hollow microspheres hybrid composites, Composites Part A: Applied Science and Manufacturing, 41(3) (2010) 345-352.