[1] A. Behera, Self-Healing Materials, In Advanced materials, Springer, 2022, pp. 321-358.
[2] N.J. Kanu, E. Gupta, U.K. Vates, G.K. Singh, Self-healing composites: A state-of-the-art review, Composites Part A: Applied Science and Manufacturing, 121 (2019) 474-486.
[3] T. Speck, G. Bold, T. Masselter, S. Poppinga, S. Schmier, M. Thielen, O. Speck, Biomechanics and functional morphology of plants-Inspiration for biomimetic materials and structures, In Plant biomechanics, Springer, 2018, pp. 399-433.
[4] K.A. Althaqafi, J. Satterthwaite, N. Silikas, A review and current state of autonomic self-healing microcapsules-based dental resin composites, Dental Materials, 36(3) (2020) 329-342.
[5] S.N. Gan, N. Shahabudin, Applications of microcapsules in self-healing polymeric materials, Microencapsulation-Processes, Technologies and Industrial Applications, (2019).
[6] J. Ren, X. Wang, D. Li, N. Han, B. Dong, F. Xing, Temperature adaptive microcapsules for self-healing cementitious materials, Composites Part B: Engineering, 223 (2021) 109138.
[7] Y. Tian, M. Zheng, P. Li, J. Zhang, R. Qiao, C. Cheng, H. Xu, Preparation and characterization of self-healing microcapsules of asphalt, Construction and Building Materials, 263 (2020) 120174.
[8] M. Mobaraki, M. Ghaffari, M. Mozafari, Basics of self-healing composite materials, In Self-healing composite materials, Woodhead Publishing Elsevier, 2020, 15-31.
[9] M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U.S. Schubert, Self‐healing materials, Advanced Materials, 22(47) (2010) 5424-5430.
[10] J.A. Syrett, C.R. Becer, D.M. Haddleton, Self-healing and self-mendable polymers, Polymer Chemistry, 1(7) (2010) 978-987.
[11] M. Samadzadeh, S.H. Boura, M. Peikari, S. Kasiriha, A. Ashrafi, A review on self-healing coatings based on micro/nanocapsules, Progress in Organic Coatings, 68(3) (2010) 159-164.
[12] P.T. Silva, L.L.M. Fries, C.R. Menezes, A.T. Holkem, C.L. Schwan, É.F. Wigmann, J.D.O. Bastos, C.D.B. Silva, Microencapsulation: concepts, mechanisms, methods and some applications in food technology, Ciência Rural, 44(7) (2014) 1304-1311.
[13] E.J. Barbero, K.J. Ford, J.A. Mayugo, Modeling self-healing of fiber-reinforced polymer-matrix composites with distributed damage, Self-healing Materials, Wiley, 2009.
[14] J.D. Rule, N.R. Sottos, S.R. White, Effect of microcapsule size on the performance of self-healing polymers, Polymer, 48(12) (2007) 3520-3529.
[15] S. Zwaag, Routes and mechanisms towards self healing behaviour in engineering materials, Technical Sciences, 58(2) (2010) 227-236.
[16] M.M. Shokrieh, H. Rajabpour-Shirazi, M. Heidari-Rarani, M. Haghpanahi, Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method, Computational Materials Science, 65 (2012) 66-73.
[17] S.D. Mookhoek, H.R. Fischer, S. van der Zwaag, A numerical study into the effects of elongated capsules on the healing efficiency of liquid-based systems, Computational Materials Science, 47(2) (2009) 506-511.
[18] F.A. Gilabert, D. Garoz, W. Van Paepegem, Macro-and micro-modeling of crack propagation in encapsulation-based self-healing materials: Application of XFEM and cohesive surface techniques, Materials & Design, 130 (2017) 459-478.
[19] E. Katoueizadeh, S.M. Zebarjad, K. Janghorban, A practical analytic model for predicting the performance of an encapsulated polymer composite, Applied Mathematical Modelling, 78 (2020) 418-432.
[20] Z. Lv, H. Chen, Analytical models for determining the dosage of capsules embedded in self-healing materials, Computational Materials Science, 68 (2013) 81-89.
[21] S.V. Zemskov, H.M. Jonkers, F.J. Vermolen, Two analytical models for the probability characteristics of a crack hitting encapsulated particles: Application to self-healing materials, Computational Materials Science, 50(12) (2011) 3323-3333.
[22] H.A. Algaifi, S.A. Bakar, A.R.M. Sam, A.R.Z. Abidin, S. Shahir, W.A.H. Towayti, Numerical modeling for crack self-healing concrete by microbial calcium carbonate, Construction and Building Materials, 189 (2018) 816-824.
[23] C. Xue, W. Li, J. Li, V.W. Tam, G. Ye, A review study on encapsulation‐based self‐healing for cementitious materials, Structural Concrete, 20(1) (2019) 98-212.
[24] E. Katoueizadeh, S.M. Zebarjad, K. Janghorban, Mechanical properties of epoxy composites embedded with functionalized urea-formaldehyde microcapsules containing an oxidizable oil, Materials Chemistry and Physics, 260 (2021) 124106.
[25] E. Katoueizadeh, S.M. Zebarjad, K. Janghorban, Investigating the effect of synthesis conditions on the formation of urea–formaldehyde microcapsules, Journal of Materials Research and Technology, 8(1) (2019) 541-552.
[26] E. Katoueizadeh, S.M. Zebarjad, K. Janghorban, Morphological study of surface-modified urea–formaldehyde microcapsules using 3-aminopropyltriethoxy silane, Polymer Bulletin, 76(3) (2019) 1317-1331.
[27] W. K. Ding, N.P. Shah, Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein, Journal of Food Science, 74(6) (2009) M231-M236.
[28] S.J. Park, Y.S. Shin, J.R. Lee, Preparation and characterization of microcapsules containing lemon oil, Journal of Colloid and Interface Science, 241(2) (2001) 502-508.
[29] J. Cha, J. Kim, S. Ryu, S.H. Hong, Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets, Composites Part B: Engineering, 162 (2019) 283-288.
[30] X. Wang, R. Han, T.L. Han, N.X. Han, F. Xing, Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory, Materials Chemistry and Physics, 215 (2018) 346-354.
[31] D. Polyzos, S.V. Tsinopoulos, D. Beskos, Static and dynamic boundary element analysis in incompressible linear elasticity, European Journal of Mechanics-A/Solids, 17(3) (1998) 515-536.
[32] Y. Zhao, W. Zhang, L.P. Liao, S. Wang, W.J. Li, Self-healing coatings containing microcapsule, Applied Surface Science, 258(6) (2012) 1915-1918.
[33] A. Beglarigale, D. Eyice, Y. Seki, Ç. Yalçınkaya, O. Çopuroğlu, H. Yazıcı, Sodium silicate/polyurethane microcapsules synthesized for enhancing self-healing ability of cementitious materials: Optimization of stirring speeds and evaluation of self-healing efficiency, Journal of Building Engineering, 39 (2021) 102279.
[34] T. Nesterova, K. Dam-Johansen, L.T. Pedersen, S. Kiil, Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing, Progress in Organic Coatings, 75(4) (2012) 309-318.
[35] H. Ullah, K. A. M Azizli, Z.B. Man, M.B.C. Ismail, M.I. Khan, The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: A review, Polymer Reviews, 56(3) (2016) 429-485.
[36] Y. Wang, D.T. Pham, C. Ji, Self-healing composites: A review, Cogent Engineering, 2(1) (2015) 1075686.
[37] N.V.N. Jyothi, P.M. Prasanna, S.N. Sakarkar, K.S. Prabha, P.S. Ramaiah, G. Srawan, Microencapsulation techniques, factors influencing encapsulation efficiency, Journal of Microencapsulation, 27(3) (2010) 187-197.
[38] M. Kosarli, D.G. Bekas, K. Tsirka, D. Baltzis, D.Τ. Vaimakis-Tsogkas, S. Orfanidis, G. Papavassiliou, A.S. Paipetis, Microcapsule-based self-healing materials: Healing efficiency and toughness reduction vs. capsule size, Composites Part B: Engineering, 171 (2019) 78-86.
[39] A. Ahmed, K. Sanada, M. Fanni, A. Abd El-Moneim, A practical methodology for modeling and verification of self-healing microcapsules-based composites elasticity, Composite Structures, 184 (2018) 1092-1098.
[40] R. De Borst, Computational methods for fracture in porous media: Isogeometric and extended finite element methods, Elsevier, 2017.
[41] A. F. Bower, Applied mechanics of solids, CRC Press 2009.
[42] N. Khun, D. Sun, M. Huang, J. Yang, C.J. Yue, Wear resistant epoxy composites with diisocyanate-based self-healing functionality, Wear, 313(1-2) (2014) 19-28.
[43] M. Samadzadeh, S.H. Boura, M. Peikari, A. Ashrafi, M. Kasiriha, Tung oil: An autonomous repairing agent for self-healing epoxy coatings, Progress in Organic Coatings, 70(4) (2011) 383-387.
[44] J.D. Littell, C.R. Ruggeri, R.K. Goldberg, G.D. Roberts, W.A. Arnold, W.K.E. Binienda, Measurement of epoxy resin tension, compression, and shear stress–strain curves over a wide range of strain rates using small test specimens, Journal of Aerospace Engineering, 21(3) (2008) 162-173.