[1] B. Mintz, S. Yue, J.J. Jonas, Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting, International Materials Reviews, 36(1) (1991) 187-220.
[2] B. Mintz, The influence of composition on the hot ductility of steels and to the problem of transverse cracking, ISIJ international, 39(9) (1999) 833-855.
[3] I. Mejíaa, A. Bedolla-Jacuinde, C. Maldonado, J.M. Cabrera, Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron, Materials Science and Engineering: A, 528(13-14) (2011) 4468-4474.
[4] A. Haft Baradaran, A. Zarei-Hanzaki, H. Abedi, S. Fatemi-Varzaneh, A. Imandoust, The ductility behavior of a high-Mn twinning induced plasticity steel during cold-to-hot deformation, Materials Science and Engineering: A, 561 (2013) 411-418.
[5] A.S. Hamada, L.P. Karjalainen, Hot ductility behaviour of high-Mn TWIP steels, Materials Science and Engineering: A, 528(3) (2011), 1819-1827.
[6] R. Nowosielski, P. Sakiewicz, P. Gramatyka, The effect of ductility minimum temperature in CuNi25 alloy, Journal of Materials Processing Technology, 162 (2005) 379-384.
[7] W. Ozgowicz, The relationship between hot ductility and intergranular fracture in a CuSn6P alloy at elevated temperatures, Journal of Materials Processing Technology, 162 (2005) 392-401.
[8] M.H. Ghavam, M. Morakabati, S.M. Abbasi, H. Badri, Hot ductility behavior of near-alpha titanium alloy IMI834, International Journal of Materials Research, 105(11) (2014) 1090-1096.
[9] H.R. Abedi, A. Zarei-Hanzaki, S. Khoddam, Effect of γ precipitates on the cavitation behavior of wrought AZ31 magnesium alloy, Materials & Design, 32(4) (2011) 2181-2190.
[10] O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, Mater, An investigation into the hot ductility behavior of AZ81 magnesium alloy, Materials Science and Engineering: A, 550 (2012) 31-38.
[11] M. Taheri-Mandarjani, A. Zarei-Hanzaki, H.R. Abedi, Hot ductility behavior of an extruded 7075 aluminum alloy. Materials Science and Engineering: A, 637 (2015) 107-122.
[12] W.L. Chan, M.W. Fu, J. Lu, J.G. Liu, Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper, Materials Science and Engineering: A, 527(24-25) (2010) 6638-6648.
[13] W.L. Chan, M.W. Fu, B. Yang, Study of size effect in micro-extrusion process of pure copper, Materials & Design, 32(7) (2011) 3772-3782.
[14] B. Yang, C. Motz, M. Rester, G. Dehm, Yield stress influenced by the ratio of wire diameter to grain size–a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires, Philosophical Magazine, 92(25-27) (2012) 3243-3256.
[15] A.T. Jennings, M.J. Burek, J.R. Greer, Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars, Physical Review Letters, 104(13) (2010) 135503.
[16] J.Q. Su, T.W. Nelson, T.R. Mc Nelley, R.S. Mishra, Development of nano-crystalline structure in Cu during friction stir processing (FSP), Materials Science and Engineering: A, 528(16-17) (2011) 5458-5464.
[17] T. Sakai, H. Miura, X. Yang, Ultrafine grain formation in face centered cubic metals during severe plastic deformation, Materials Science and Engineering: A, 499(1-2) (2009) 2-6.
[18] K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, C. Koch, Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys, Acta Materialia, 59(14) (2011) 5758-5764.
[19] X.Y. San, X.G. Liang, L.P. Chen, Z.L. Xia, X.K. Zhu, Influence of stacking fault energy on the mechanical properties in cold-rolling Cu and Cu–Ge alloys, Materials Science and Engineering: A, 528(27) (2011) 7867-7870.
[20] A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki, Grain refinement in copper under large strain deformation, Philosophical Magazine A, 81(11) (2001) 2629-2643
[21] H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, E. Nazari, Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints, Materials & Design, 35 (2012) 330-334.
[22] F. Cao, I.J. Beyerlein, F.L. Addessio, B.H. Sencer, C.P. Trujillo, E.K. Cerreta, G.T. Gray III, Orientation dependence of shock-induced twinning and substructures in a copper bicrystal, Acta Materialia, 58(2) (2010) 549-559.
[23] H. Zhang, H.G. Zhang, D.S. Peng, Hot deformation behavior of KFC copper alloy during compression at elevated temperatures, Transactions of Nonferrous Metals Society of China, 16(3) (2006) 562-566.
[24] S.H. Huang, D.Y. Shu, C.K. Hu, S.F. Zhu, Effect of strain rate and deformation temperature on strain hardening and softening behavior of pure copper, Transactions of Nonferrous Metals Society of China, 26(4) (2016) 1044-1054.
[25] S. H. Huang, S.X. Chai, X.S. Xia, Q. Chen, D.Y. Shu, Compression deformation behaviour and processing map pf pure copper, Strength of Materials, 48 (2016) 98-106.
[26] A. Belyakov, H. Miura, T. Sakai, Dynamic recrystallization under warm deformation of polycrystalline copper, ISIJ International, 38(6) (1998) 595-601.
[27] M. Heinemann, B. Eifert, C. Heiliger, Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3, Physical Review B, 87(11) (2013) 115111.
[28] ASTM E21, Standard test methods for elevated temperature tension tests of metallic materials, ASTM International, 1988.
[29] ASTM E209, Standard practice for compression tests of metallic materials at elevated tmperatures with conventional or rapid heating rates and strain rates, ASTM International, 2010.
[30] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, 2004.
[31] P. Zhao, T.S.E. Low, Y. Wang, S.R. Niezgoda, An integrated full-field model of co-current plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper, International Journal of Plasticity, 80 (2016) 38-55.
[32] N. Ravichandran, Y.V.R.K. Prasad, Influence of oxygen on dynamic recrystallization during hot working of polycrystalline copper, Materials Science and Engineering: A, 156(2) (1992) 195-204.
[33] B.H. Chen, H. Yu, Hot ductility behavior of V-N and V-Nb microalloyed steels, International Journal of Minerals, Metallurgy, and Materials, 19(6) (2012) 525-529.