[1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–a review, Progress in Materials Science, 54(3) (2009) 397-425.
[2] M. Peters, C. Leyens, Titanium and titanium alloys: fundamentals and applications, John Wiley & Sons, 2006.
[3] R.K. Nalla, R.O. Ritchie, B.L. Boyce, J.P. Campbell, J.O. Peters, Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: bimodal vs. lamellar structures, Metallurgical and Materials Transactions A, 33(3) (2002) 899-918.
[4] J.H. Zuo, Z.G. Wang, E.H. Han, Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V, Materials Science and Engineering: A, 473(1-2) (2008) 147-152.
[5] G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang, Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys, Materials & Design, 46 (2013) 668-674.
[6] V. Crupi, G. Epasto, E. Guglielmino, A. Squillace, Influence of microstructure [alpha+ beta and beta] on very high cycle fatigue behavior of Ti-6Al-4V alloy, International Journal of Fatigue, 95 (2017) 64-75.
[7] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia, 8(11) (2012) 3888-3903.
[8] S.H. Teoh. Fatigue of Biomaterials: a review, International Journal of Fatigue, 22(10) (2000) 825-837.
[9] L.R. Saitova, H.W. Höppel, M. Göken, I.P. Semenova, G.I. Raab, R.Z. Valiev, Fatigue behavior of ultrafine-grained Ti–6Al–4V ‘ELI’ alloy for medical applications, Materials Science and Engineering: A, 503(1-2) (2009) 145-147.
[10] J.B. Park, R.S. Lakes, Metallic implant materials, Biomaterials, (2007) 99-137.
[11] M. Semilitsch, H.G. Willert, Properties of implant alloys for artificial hip joints, Medical and Biological Engineering and Computing, 18(4) (1980) 511-520.
[12] D.R. Sumner, T.M. Turner, R. Igloria, R.M. Urban, J.O. Galante, Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness, Journal of Biomechanics, 31(10) (1998) 909-917.
[13] M. Long, H.J. Rack, Titanium alloys in total joint replacement—a materials science perspective, Biomaterials, 19(18) (1998) 1621-1639.
[14] M. Balazic, J. Kopac, M.J. Jackson, W. Ahmed, Titanium and titanium alloy applications in medicine, International Journal of Nano and Biomaterials, 1(1) (2007) 3-34.
[15] A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs, T.J. FitzGerald, Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr—a new titanium alloy for surgical implants, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM International, (1996) 96-113.
[16] M. Semlitsch, Titanium alloys for hip joint replacements, Clinical Materials, 2(1) (1987) 1-13.
[17] H. Gheshlaghi, V. Alimirzaloo, M. Shahbaz, A. Amiri, Numerical study and optimization of the thermomechanical procedure in forging of two-phase Ti-6Al-4V Alloy for artificial hip joint implant, Iranian Journal of Materials Forming, 9(3) (2022) 31-43.
[18] ASM Metals Handbook Vol. 14: Forming and Forging, ASM International, 9th Edition, 1988.
[19] R. Sethy, L. Galdos, J. Mendiguren, E. Sáenz de Argandoña, Friction and heat transfer coefficient determination of titanium alloys during hot forging conditions, Advanced Engineering Materials, 19(6) (2017) 1600060.
[20] R. Ebrahimi, A. Najafizadeh, A new method for evaluation of friction in bulk metal forming, Journal of Materials Processing Technology, 152(2) (2004) 136-143.
[21] Scientific Forming Technologies Corporation (SFTC), 2010.
[22] S.K. Choi, M.S. Chun, C.J. Van Tyne, Y.H. Moon, Optimization of open die forging of round shapes using FEM analysis, Journal of Materials Processing Technology, 172(1) (2006) 88-95.
[23] V. Alimirzaloo, F.R. Biglari, M.H. Sadeghi, Numerical and experimental investigation of preform design for hot forging of an aerofoil blade, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(7) (2011) 1129-1139.
[24] J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyka, Microstructure and mechanical properties of high strength two-phase titanium alloys, Titanium Alloys-Advances in Properties Control, InTech, Croatia, 2013, pp. 69-80.