Tailoring of Eco-Friendly Epoxies with Synergistic Adhesion Strength

Document Type : Research Paper

Authors

1 Department of Materials Science and Engineering, Faculty of Engineering, Urmia University, P. O. BOX 575615-1818, Urmia, Iran

2 Baspar Pishrafteh Sharif Company, Tehran, Iran

3 Department of Materials Science and Engineering, Sharif University of Technology, P. O. Box 11155-9466, Tehran, Iran

Abstract

For sustainable development, eco-friendly epoxies, composed of recycled rubber micro-particles and core-shell rubber (CSR) nanoparticles, were processed to improve adhesion strength of an epoxy resin to structural steel substrates. To achieve this, the influence of mixing ratio of a recycled rubber micro-particles and CSR nanoparticles on the adhesion strength and adhesion fracture mechanisms of an epoxy were investigated in the present study. Synergistic adhesion strength was obtained for a certain combination of 7.5 parts per hundred resin (phr) CSR nanoparticles and 2.5 phr recycled rubber micro-particles. The remarkable increase in adhesion strength was attributable to “branching” of the crack-tip damage zone plus crack deflection to cause an adhesive to cohesive fracture transformation.

Keywords


[1]    D. Mmereki, B. Machola, K. Mokokwe, Status of waste tires and management practice in Botswana, Journal of the Air & Waste Management Association, 69(10) (2019) 1230-1246.
[2]    S.M.R. Costa, D. Fowler, G.A. Carreira, I. Portugal, C.M. Silva, Production and upgrading of recovered carbon black from the pyrolysis of end-of-life tires, Materials, 15(6) (2022) 2030.
[3]    Global tire recycling market analysis 2025: opportunity, demands, growth and forcast 2017-2025, 2021 Ed. www.goldsteinresearch.com/report/global-tire-recycling-industry-market-trends-analysis.
[4]    K. Formela, Sustainable development of waste tires recycling technologies–recent advances, challenges and future trends, Advanced Industrial and Engineering Polymer Research, 4(3) (2021) 209-222.
[5]    B.T. Marouf, R.A. Pearson, R. Bagheri, Anomalous fracture behavior in an epoxy-based hybrid composite, Materials Science and Engineering: A, 515(1-2) (2009) 49-58.
[6]    A.B. Irez, E. Bayraktar, I. Miskioglu, Fracture toughness analysis of epoxy-recycled rubber-based composite reinforced with graphene nanoplatelets for structural applications in automotive and aeronautics, Polymers, 12(2) (2020) 448.
[7]    H. Wei, J. Xia, W. Zhou, L. Zhou, G. Hussain, Q. Li, K. Ostrikov, Adhesion and cohesion of epoxy-based industrial composite coatings, Composites Part B: Engineering, 193 (2020) 108035.
[8]    B.T. Marouf, Y.W. Mai, R. Bagheri, R.A. Pearson, Toughening of epoxy nanocomposites: nano and hybrid effects, Polymer Reviews, 56(1) (2016) 70-112.
[9]    B.T. Marouf, R. Bagheri, R. Mahmudi, Role of interfacial fracture energy and laminate architecture on impact performance of aluminum laminates, Composites Part A: Applied Science and Manufacturing, 39(11) (2008) 1685-1693.
[10]  C. Qu, X. Zhang, D. Wang, X. Fan, H. Li, C. Liu, H. Feng, R. Wang, K. Guo, Y. Tian, Y. Liu, Residual stress and thermal properties of rubber-modified epoxy systems for semiconductor package, Journal of Applied Polymer Science, 139(11) (2022) 51786.
[11]  B.T. Marouf, R. Bagheri, Applications of epoxy/rubber blends, in: J. Parameswaranpillai, N. Hameed, J. Pionteck, E.M. Woo (Eds.), Handbook of epoxy blends, Springer International Publishing, Cham, 2017, pp. 399-426.
[12]  R. Bagheri, B.T. Marouf, R.A. Pearson, Rubber-toughened epoxies: a critical review, Polymer Reviews, 49(3) (2009) 201-225.
[13]  T. Okamatsu, M. Ochi, Effect on the toughness and adhesion properties of epoxy resin modified with silyl-crosslinked urethane microsphere, Polymer, 43(3) (2002) 721-730.
[14]  X. Colom, J. Cañavate, F. Carrillo, J.I. Velasco, P. Pagès, R. Mujal, F. Nogués, Structural and mechanical studies on modified reused tyres composites, European Polymer Journal, 42(10) (2006) 2369-2378.
[15]  X. Colom, F. Carrillo, J. Cañavate, Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility, Composites Part A: Applied Science and Manufacturing, 38(1) (2007) 44-50.
[16]  A. Hejna, J. Korol, M. Przybysz-Romatowska, Ł. Zedler, B. Chmielnicki, K. Formela, Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers–a review, Waste Management, 108 (2020) 106-118.
[17]  G.S. Chae, H.W. Park, J.H. Lee, S. Shin, Comparative study on the impact wedge-peel performance of epoxy-based structural adhesives modified with different toughening agents, Polymers, 12(7) (2020) 1549.
[18]  J.P. Schneider, H. Lengsfeld, Toughening of a dicyandiamide-cured epoxy resin: Influence of cure conditions on different rubber modifications, Polymer Engineering & Science, 61(10) (2021) 2445-2452.
[19]  R.A. Pearson, A.F. Yee, Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies, Journal of Materials Science, 26(14) (1991) 3828-3844.
[20]  R. Bagheri, R.A. Pearson, Role of particle cavitation in rubber-toughened epoxies: II. Inter-particle distance, Polymer, 41(1) (2000) 269-276.
[21]  R. Bagheri, R.A. Pearson, The use of microvoids to toughen polymers, Polymer, 36(25) (1995) 4883-4885.
[22]  R. Bagheri, R.A. Pearson, Role of particle cavitation in rubber-toughened epoxies: 1. Microvoid toughening, Polymer, 37(20) (1996) 4529-4538.
[23]  D. Baek, K.B. Sim, H.J. Kim, Mechanical characterization of core-shell rubber/epoxy polymers for automotive structural adhesives as a function of operating temperature, Polymers, 13(5) (2021) 734.
[24]  P. Tamas-Benyei, E. Bitay, H. Kishi, S. Matsuda, T. Czigany, Toughening of epoxy resin: the effect of water jet milling on worn tire rubber particles, Polymers, 11(3) (2019) 529.
[25]  R. Bagheri, M.A. Williams, R.A. Pearson, Use of surface modified recycled rubber particles for toughening of epoxy polymers, Polymer Engineering & Science, 37(2) (1997) 245-251.
[26]  P. Dittanet, R.A. Pearson, Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin, Polymer, 54(7) (2013) 1832-1845.
[27]  T.K. Chen, Y.H. Jan, Fracture mechanism of toughened epoxy resin with bimodal rubber-particle size distribution, Journal of Materials Science, 27(1) (1992) 111-121.
[28]  M.J. Boynton, A. Lee, Fracture of an epoxy polymer containing recycled elastomeric particles, Journal of Applied Polymer Science, 66(2) (1997) 271-277.
[29]  C. Kaynak, E. Sipahi-Saglam, G. Akovali, A fractographic study on toughening of epoxy resin using ground tyre rubber, Polymer, 42(9) (2001) 4393-4399.
[30]  G.J. Gerace MJ, Williams MA, Surface-activated rubber particles improve structural adhesives, Adhesive Age, 38(13) (1995) 26-30.
[31]  B. Tekyeh-Marouf, R. Bagheri, R. Mahmudi, Effects of number of layers and adhesive ductility on impact behavior of laminates, Materials Letters, 58(22-23) (2004) 2721-2724.
[32]  K.L. Mittal, The role of the interface in adhesion phenomena, Polymer Engineering & Science, 17(7) (1977) 467-473.
[33]  R.D. Adams, J. Comyn, W.C. Wake, Structural adhesives joints in engineering, 2nd Ed., Chapman and Hall, London, 1997.
[34]  A.J. Kinloch, Adhesion and adhesvies: science and technology, Chapman and Hall, London, 1987.
[35]  R.A. Gledhill, A.J. Kinloch, Failure criterion for the fracture of structural adhesive joints, Polymer, 17(8) (1976) 727-731.
[36]  A. Romo-Uribe, J.A. Arcos-Casarrubias, A. Flores, C. Valerio-Cárdenas, A.E. González, Influence of rubber on the curing kinetics of DGEBA epoxy and the effect on the morphology and hardness of the composites, Polymer Bulletin, 71(5) (2014) 1241-1262.
[37]  M.H. Karami, M.R. Kalaee, S. Mazinani, M. Shakiba, S. Shafiei Navid, M. Abdouss, A. Beig Mohammadi, W. Zhao, M. Koosha, Z. Song, T. Li, Curing kinetics modeling of epoxy modified by fully vulcanized elastomer nanoparticles using rheometry method, Molecules, 27(9) (2022) 2870.
[38]  A.F. Yee, R.A. Pearson, Toughening mechanisms in elastomer-modified epoxies, Journal of Materials Science, 21(7) (1986) 2462-2474.
[39]  H. Hadavinia, L. Kawashita, A.J. Kinloch, D.R. Moore, J.G. Williams, A numerical analysis of the elastic-plastic peel test, Engineering Fracture Mechanics, 73(16) (2006) 2324-2335.