[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6(5) (2004) 299-303.
[2] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, 61 (2014) 1-93.
[3] A.J. Zaddach, R.O. Scattergood, C.C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys, Materials Science and Engineering: A, 636 (2015) 373-378.
[4] D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Materialia, 123 (2017) 285-294.
[5] F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal plasticity finite element methods: in Materials science and engineering, John Wiley & Sons, Weinheim, 2011.
[6] K.D. Liss, A. Bartels, A. Schreyer, High-energy X-rays: a tool for advanced bulk investigations in materials science and physics, Textures and Microstructures, 35(3-4) (2003) 219-252.
[7] H.R. Wenk, P. Van Houtte, Texture and anisotropy, Reports on Progress in Physics, 67(8) (2004) 1367.
[8] H. Hu, Texture of metals, Texture, 1 (1974) 233-258.
[9] G.I. Taylor, Plastic strain in metals, Journal of the Institute of Metals, 62 (1938) 307-324.
[10] R.A. Lebensohn and C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metallurgica et Materialia, 41(9) (1993) 2611-2624.
[11] A. Despres, M. Zecevic, R.A. Lebenson, J.D. Mithieux, Contribution of intragranular misorientation to the cold rolling textures of ferritic stainless steels, Acta Materialia, 182 (2020) 184-196.
[12] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65 (2013) 1780-1789.
[13] N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, K.C. Cho, High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy, Materials & Design, 86 (2015) 598-602.
[14] M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, D. Fabijanic, Static recrystallization and grain growth behavior of Al0.3CoCrFeNi high entropy alloy, Materials Science and Engineering: A, 754 (2019) 282-294.
[15] V.V. Mishin, I.A. Shishov, O.N. Stolyarov, I.A. Kasatkin, Effect of cold rolling route on deformation mechanism and texture evolution of thin beryllium foils: exprement and VPSC simulation, Materials Characterization, 164 (2020) 110350.
[16] R.A. Lebensohn, C. Tomé, A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals, Materials Science and Engineering: A, 175(1-2) (1994) 71-82.
[17] C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design, JOM, 64 (2012) 839-845.
[18] R.A. Lebensohn, C.N. Tomé, P.J. Maudlin, A selfconsistent formulation for the prediction of the anisotropic behavior of viscoplastic polycrystals with voids, Journal of the Mechanics and Physics of Solids, 52(2) (2004) 249-278.
[19] J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348 (1976) 101–127.
[20] R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, Journal of the Mechanics and Physics of Solids, 48(6-7) (2000) 1203-1227.
[21] C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner, Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis, Acta Materialia, 49(15) (2001) 3085-3096.
[22] S. Gangireddy, B. Gwalani, K. Liu, R. Banerjee, R.S. Mishra, Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy, Journal of Materials Science and Engineering: A, 734 (2018) 42-50.
[23] M.A. Iadicola, L. Hu, A.D. Rollett, T. Foecke, Crystal plasticity analysis of constitutive behavior of 5754 aluminum sheet deformed along bi-linear strain paths, International Journal of Solids and Structures, 49(25) (2012) 3507-3516.
[24] S.F. Chen, H.W. Song, S.H. Zhang, M. Cheng, C. Zheng, M.G. Lee, An effective Schmid factor in consideration of combined normal and shear stress for slip/twin variant selection of Mg-3Al-1Zn alloy, Scripta Materialia, 167 (2019) 51-55.
[25] A. Chapuis, Z.Q. Wang, Q. Liu, Influence of material parameters on modeling plastic deformation of Mg alloys, Materials Science and Engineering: A, 655 (2016) 244-250.
[26] J. Galán-López, P. Verleysen, Simulation of the plastic response of Ti–6Al–4V thin sheet under different loading conditions using the viscoplastic self-consistent model, Materials Science and Engineering: A, 712 (2018) 1-11.
[27] H. Pan, F. Wang, M. Feng, L. Jin, J. Dong, P. Wu, Mechanical behavior and microstructural evolution in rolled Mg-3Al-1Zn-0.5Mn alloy under large strain simpleshear, Materials Science and Engineering: A, 712 (2018) 585-591.
[28] Q. Jiao, G.D. Sim, M. Komarasamy, R.S. Mishra, P.K. Liaw, J.A. El-Awady, Thermo-mechanical response of single-phase face centered cubic AlxCoCrFeNi high entropy alloy microcrystals, Materials Research Letters, 6(5) (2018) 300-306.
[29] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials, 6(5) (2004) 299-303.
[30] J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions A, 35 (2004), 2533-2536.
[31] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for component alloys, Advanced Engineering Materials, 10(6) (2008) 534-538.
[32] Y.J. Zhou, Y. Zhang, F.J. Wang, G.L. Chen, Phase transformation induced by lattice distortion in multiprincipal component Co Cr Fe Ni Cux Al1-x solid-solution alloys, Applied Physics Letters, 92(24) (2008) 241917.
[33] A. Khajezadeh, M. Habibi Parsa, H. Mirzadeh, Crystal plasticity analysis of texture evolution of pure aluminum during processing by a new severe plastic deformation technique, Metallurgical and Materials Transactions A, 47 (2016) 941-948.